Hyper Suprime-Cam survey maps dark matter in the universe

Cosmos by John Hussey


Today, astronomers have released the deepest wide field map of the three-dimensional distribution of matter in the universe ever made and increased the precision of constraints for dark energy with the Hyper Suprime-Cam survey (HSC).

Today, astronomers have released the deepest wide field map of the three-dimensional distribution of matter in the universe ever made and increased the precision of constraints for dark energy with the Hyper Suprime-Cam survey (HSC).

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Today, an international group of researchers, including Carnegie Mellon University’s Rachel Mandelbaum, released the deepest wide field map of the three-dimensional distribution of matter in the universe ever made and increased the precision of constraints for dark energy with the Hyper Suprime-Cam survey (HSC).

The present-day universe is a pretty lumpy place. As the universe has expanded over the last 14 billion years or so, galaxies and dark matter have been increasingly drawn together by gravity, creating a clumpy landscape with large aggregates of matter separated by voids where there is little or no matter.

The gravity that pulls matter together also impacts how we observe astronomical objects. As light travels from distant galaxies towards Earth, the gravitational pull of the other matter in its path, including dark matter, bends the light. As a result, the images of galaxies that telescopes see are slightly distorted, a phenomenon called weak gravitation lensing. Within those distortions is a great amount of information that researchers can mine to better understand the distribution of matter in the universe, and it provides clues to the nature of dark energy.

The HSC map, created from data gathered by Japan’s Subaru telescope located in Hawaii, allowed researchers to measure the gravitational distortion in images of about 10 million galaxies.

The Subaru telescope allowed them to see the galaxies further back in time than in other similar surveys. For example, the Dark Energy Survey analyzes a much larger area of the sky at a similar level of precision as HSC, but only surveys the nearby universe. HSC takes a narrower, but deeper view, which allowed researchers to see fainter galaxies and make a sharper map of dark matter distribution.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Universe – Dark Matter and Dark Energy

The research team compared their map with the fluctuations predicted by the European Space Agency Planck satellite’s observations of the cosmic microwave background radiation — radiation from the earliest days of the universe. The HSC measurements were slightly lower than, but still statistically consistent with Planck’s. The fact that HSC and other weak lensing surveys all find slightly lower results than Planck raises the tantalizing question of whether dark energy truly behaves like Einstein’s cosmological constant.

“Our map gives us a better picture of how much dark energy there is and tells us a little more about its properties and how it’s making the expansion of the universe accelerate,” Mandelbaum said. “The HSC is a great complement to other surveys. Combining data across projects will be a powerful tool as we try uncover more and more about the nature of dark matter and dark energy.”

Measuring the distortions caused by weak gravitational lensing isn’t easy. The effect is quite small and distortions in galaxy shapes can also be caused by the atmosphere, the telescope and the detector. To get precise, accurate results, researchers need to know that they are only measuring effects from weak lensing.

Mandelbaum, associate professor of physics and member of the McWilliams Center for Cosmology at Carnegie Mellon, is an expert at controlling for these outside distortions. She and her team created a detailed image simulation of the HSC survey data based on images from the Hubble Space Telescope. From these simulations, they were able to apply corrections to the galaxy shapes to remove the shape distortions caused by effects other than lensing.

These results come from the HSC survey’s first year of data. In all, the HSC survey will collect five years of data that will yield even more information about the behavior of dark energy and work towards other goals such as studying the evolution of galaxies and massive clusters of galaxies across cosmic time, measuring time-varying objects like supernovae, and even studying our own Milky Way galaxy.

 

Story Source:

Materials provided by Carnegie Mellon University. Original written by Jocelyn Duffy.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2018/09/180926082711.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Hubble spies a spiral snowflake

Cosmos by John Hussey


Together with irregular galaxies, spiral galaxies make up approximately 60 percent of the galaxies in the local universe. However, despite their prevalence, each spiral galaxy is unique — like snowflakes, no two are alike. This is demonstrated by the striking face-on spiral galaxy NGC 6814, whose luminous nucleus and spectacular sweeping arms, rippled with an intricate pattern of dark dust.

The striking face-on spiral galaxy NGC 6814, whose luminous nucleus and spectacular sweeping arms, rippled with an intricate pattern of dark dust, are captured in this NASA/ESA Hubble Space Telescope image.

Credit: ESA/Hubble & NASA; Acknowledgement: Judy Schmidt

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Together with irregular galaxies, spiral galaxies make up approximately 60 percent of the galaxies in the local universe. However, despite their prevalence, each spiral galaxy is unique — like snowflakes, no two are alike. This is demonstrated by the striking face-on spiral galaxy NGC 6814, whose luminous nucleus and spectacular sweeping arms, rippled with an intricate pattern of dark dust, are captured in this NASA/ESA Hubble Space Telescope image.

NGC 6814 has an extremely bright nucleus, a telltale sign that the galaxy is a Seyfert galaxy. These galaxies have very active centers that can emit strong bursts of radiation. The luminous heart of NGC 6814 is a highly variable source of X-ray radiation, causing scientists to suspect that it hosts a supermassive black hole with a mass about 18 million times that of the sun.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Telescopes – Hubble – 15 Years of Discovery

As NGC 6814 is a very active galaxy, many regions of ionized gas are studded along its spiral arms. In these large clouds of gas, a burst of star formation has recently taken place, forging the brilliant blue stars that are visible scattered throughout the galaxy.

 

Story Source:

Materials provided by NASA/Goddard Space Flight Center.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/05/160513112132.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Supernova reserve fuel tank clue to big parents

Cosmos by John Hussey


Some supernovae have a reserve tank of radioactive fuel that cuts in and powers their explosions for three times longer than astronomers had previously thought. A team of astronomers detected the faint afterglow of a supernova, and found it was powered by radioactive cobalt-57.

Artist’s impression of a supernova (stock illustration).

Credit: © satori / Fotolia

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Some supernovae have a reserve tank of radioactive fuel that cuts in and powers their explosions for three times longer than astronomers had previously thought.

A team of astronomers jointly led by Dr Ivo Seitenzahl from The Australian National University (ANU) detected the faint afterglow of a supernova, and found it was powered by radioactive cobalt-57.

The discovery gives important new clues about the causes of Type Ia supernovae, which astronomers use to measure vast distances across the Universe.

Dr Seitenzahl said the discovery of cobalt-57 fingerprints in a Type Ia supernova gave insights into the star that exploded and suggested it was at the top of its weight range.

“This explosion suggested that it was a star stealing matter from an orbiting partner until it got so massive that its core of carbon ignited and set off the explosion,” said Dr Seitenzahl, an astronomer at the ANU Research School of Astronomy and Astrophysics.

“It’s exciting to work this out because there are conflicting theories about what causes Type Ia supernovae.

“It’s curious to me that we still don’t know exactly what these things are, even though they are so important for cosmology.”

Type Ia supernovae are explosions that can be seen even in far-away galaxies and help astronomers study the large-scale structure of the Universe. For a period of weeks after they explode they can outshine the billions of other stars in their galaxy, and do so in a predictable fashion that makes them a reliable cosmic beacon.

Astronomers believe that Type Ia supernovae occur when matter falls into an old white-dwarf star and pushes its mass over a threshold at which the carbon core ignites and triggers the star to explode.

However, it was unclear whether the star sucked in matter slowly from a companion star, or a collision between two smaller stars pushed the system over the edge.

In the case of a collision, theories suggest a white dwarf can be as small as 1.1 times the mass of the Sun when it explodes, but this finding pointed towards a heavier star, around 1.4 solar masses, supporting the slow suck model. The team, from Australia and the US, calculated the star’s mass from the abundance of the cobalt isotopes created by nuclear fusion in the supernova.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Universe – Supernovae

When the core ignites, carbon and oxygen fuse to form lots of radioactive cobalt-56, whose radioactive decay into iron-56 with a half-life of 77 days powers the peak brightness of a supernova.

However, Dr Seitenzahl had believed traces of cobalt-57 must be created too, and the exact amount would distinguish between a 1.1 and 1.4 solar mass explosion.

“It doesn’t seem like a big difference, but it amounts to 100 times higher density in the core of the star, which means a lot more cobalt-57 is created.”

Even so, the amount of cobalt-57 is tiny, so the team needed patience to see it against the glare of the cobalt-56. Cobalt-57’s longer half life, 270 days, means it keeps glowing after the cobalt-56 has died out after a couple of years.

The international team watched the supernova for 1,055 days after the explosion with the Hubble Space Telescope, and found a persistent glow after the cobalt-56 had faded that matched Dr Seitenzahl’s predictions, from 2009.

“I was skeptical whether clues for the presence of cobalt-57 in Type Ia supernovae would be observed in my lifetime,” Seitenzahl said.

“I am absolutely thrilled that now, only seven years after our predictions, the Hubble Space Telescope has enabled us to make these incredibly faint observations and proved the theory right,” he said.

 

Story Source:

Materials provided by Australian National University.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/05/160518102740.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Photonics advances allow us to be seen across the universe, with major implications for search for extraterrestrial intelligence

Cosmos by John Hussey

 

Looking up at the night sky — expansive and seemingly endless, stars and constellations blinking and glimmering like jewels just out of reach — it’s impossible not to wonder: Are we alone? For many of us, the notion of intelligent life on other planets is as captivating as ideas come. Maybe in some other star system, maybe a billion light years away, there’s a civilization like ours asking the exact same question. Imagine if we sent up a visible signal that could eventually be seen across the entire universe. Imagine if another civilization did the same.

Are we alone? Imagine if we sent up a visible signal that could eventually be seen across the entire universe. Imagine if another civilization did the same.

Credit: © Stefano Garau / Fotolia

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Looking up at the night sky — expansive and seemingly endless, stars and constellations blinking and glimmering like jewels just out of reach — it’s impossible not to wonder: Are we alone?

For many of us, the notion of intelligent life on other planets is as captivating as ideas come. Maybe in some other star system, maybe a billion light years away, there’s a civilization like ours asking the exact same question.

Imagine if we sent up a visible signal that could eventually be seen across the entire universe. Imagine if another civilization did the same.

The technology now exists to enable exactly that scenario, according to UC Santa Barbara physics professor Philip Lubin, whose new work applies his research and advances in directed-energy systems to the search for extraterrestrial intelligence (SETI). His recent paper “The Search for Directed Intelligence” appears in the journal REACH — Reviews in Human Space Exploration.

“If even one other civilization existed in our galaxy and had a similar or more advanced level of directed-energy technology, we could detect ‘them’ anywhere in our galaxy with a very modest detection approach,” said Lubin, who leads the UCSB Experimental Cosmology Group. “If we scale it up as we’re doing with direct energy systems, how far could we detect a civilization equivalent to ours? The answer becomes that the entire universe is now open to us.

“Similar to the use of directed energy for relativistic interstellar probes and planetary defense that we have been developing, take that same technology and ask yourself, ‘What are consequences of that technology in terms of us being detectable by another ‘us’ in some other part of the universe?'” Lubin added. “Could we see each other? Can we behave as a lighthouse, or a beacon, and project our presence to some other civilization somewhere else in the universe? The profound consequences are, of course, ‘Where are they?’ Perhaps they are shy like us and do not want to be seen, or they don’t transmit in a way we can detect, or perhaps ‘they’ do not exist.”

The same directed energy technology is at the core of Lubin’s recent efforts to develop miniscule, laser-powered interstellar spacecraft. That work, funded since 2015 by NASA (and just selected by the space agency for “Phase II” support) is the technology behind billionaire Yuri Milner’s newsmaking, $100-million Breakthrough Starshot initiative announced April 12.

Lubin is a scientific advisor on Starshot, which is using his NASA research as a roadmap as it seeks to send tiny spacecraft to nearby star systems.

In describing directed energy, Lubin likened the process to using the force of water from a garden hose to push a ball forward. Using a laser light, spacecraft can be pushed and steered in much the same way. Applied to SETI, he said, the directed energy system could be deployed to send a targeted signal to other planetary systems.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Universe – Mapping the Universe

“In our paper, we propose a search strategy that will observe nearly 100 billion planets, allowing us to test our hypothesis that other similarly or more advanced civilizations with this same broadcast capability exist,” Lubin said.

“As a species we are evolving rapidly in photonics, the production and manipulation of light,” he explained. “Our recent paper explores the hypothesis: We now have the ability to produce light extremely efficiently, and perhaps other species might also have that ability. And if so, then what would be the implications of that? This paper explores the ‘if so, then what?'”

Traditionally and still, Lubin said, the “mainstay of the SETI community” has been to conduct searches via radio waves. Think Jodie Foster in “Contact,” receiving an extraterrestrial signal by way of a massive and powerful radio telescope. With Lubin’s UCSB-developed photonics approach, however, making “contact” could be much simpler: Take the right pictures and see if any distant systems are beaconing us.

“All discussions of SETI have to have a significant level of, maybe not humor, but at least hubris as to what makes reason and what doesn’t,” Lubin said. “Maybe we are alone in terms of our technological capability. Maybe all that’s out there is bacteria or viruses. We have no idea because we’ve never found life outside of our Earth.

“But suppose there is a civilization like ours and suppose — unlike us, who are skittish about broadcasting our presence — they think it’s important to be a beacon, an interstellar or extragalactic lighthouse of sorts,” he added. “There is a photonics revolution going on on Earth that enables this specific kind of transmission of information via visible or near-infrared light of high intensity. And you don’t need a large telescope to begin these searches. You could detect a presence like our current civilization anywhere in our galaxy, where there are 100 billion possible planets, with something in your backyard. Put in context, and we would love to have people really think about this: You can literally go out with your camera from Costco, take pictures of the sky, and if you knew what you were doing you could mount a SETI search in your backyard. The lighthouse is that bright.”

 

Story Source:

Materials provided by University of California – Santa Barbara. Original written by Shelly Leachman.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/05/160518125551.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Cosmic heavy metals help scientists trace the history of galaxies

Cosmos by John Hussey


Astrophysicists discuss how the collisions of the densest stars in the universe can forge heavy metals such as gold and platinum and help trace the histories of entire galaxies

The origin of many of the most precious elements on the periodic table, such as gold, silver and platinum, has perplexed scientists for more than six decades. Recently, however, a team of astrophysicists has provided an answer.

What is the origin of gold, silver, platinum?

Credit: © alexphoto71 / Fotolia

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

The origin of many of the most precious elements on the periodic table, such as gold, silver and platinum, has perplexed scientists for more than six decades. Now a recent study has an answer, evocatively conveyed in the faint starlight from a distant dwarf galaxy.

In a roundtable discussion, published today, The Kavli Foundation spoke to two of the researchers behind the discovery about why the source of these heavy elements, collectively called “r-process” elements, has been so hard to crack.

“Understanding how heavy, r-process elements are formed is one of hardest problems in nuclear physics,” said Anna Frebel, assistant professor in the Department of Physics at the Massachusetts Institute of Technology (MIT) and also a member of the MIT Kavli Institute for Astrophysics and Space Research (MKI).

“The production of these really heavy elements takes so much energy that it’s nearly impossible to make them experimentally,” Frebel continued. “The process for making them just doesn’t work on Earth. So we have had to use the stars and the objects in the cosmos as our lab.”

The findings also demonstrate how determining the contents of stars can shed light on the history of the galaxy hosting them. Nicknamed “stellar archaeology,” this approach is increasingly allowing astrophysicists to learn more about conditions in the early universe.

“I really think these findings have opened a new door for studying galaxy formation with individual stars and to some extent individual elements,” said Frebel. “We are seriously connecting the really small scales of stars with the really big scales of galaxies.”

In the late 1950s, nuclear physicists had worked out that extreme conditions somewhere in the cosmos, full of subatomic particles called neutrons, must serve as the forges for r-process elements, which also include familiar substances such as uranium and lead. The explosions of giant stars and the rare mergings of the densest stars in the universe, called neutron stars, were the most plausible sources. But observational evidence was sorely lacking.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Chemistry – A Volatile History – Part 1 of 3 – Discovering The Elements

Researchers at the MKI have now filled this observational gap. An analysis of the starlight from several of the brightest stars in a tiny galaxy called Reticulum II, located some 100,000 light years from Earth, suggests these stars contain whopping amounts of r-process elements.

Since the stars could not have made the heavy elements on their own, some event in Reticulum II’s past must have “seeded” and enriched the matter that grew into these stars. The abundances of elements in the stars squarely implicates the collision of two neutron stars.

Frebel’s graduate student Alexander Ji discovered the enriched stars in Reticulum II while using the Magellan telescopes at the Las Campanas Observatory in Chile. He is first author on a paper about the findings, published March 31 in the journal Nature.

“When we read off the r-process content of that first star in our telescope, it just looked wrong, like it could not have come out of this galaxy!” said Ji, in the roundtable. “I spent a long time making sure the telescope was pointed at the right star.”

Ji further commented on how the discovery helps to finally tell the tale of how r-process elements come to exist. “Definitely one of the things that I think attracts people to astronomy is understanding the origin of everything around us.”

Enrico Ramirez-Ruiz, a professor of Astronomy and Astrophysics at the University of California, Santa Cruz, joined Ji and Frebel for the roundtable.

“I’ve been working on neutron star mergers for a while, so I was extremely excited to see Alex and Anna’s results,” said Ramirez-Ruiz, who was not involved in the research. “Their study is indeed a smoking gun that exotic neutron star mergers were occurring very early in the history of this particular dwarf galaxy, and for that matter likely in many other small galaxies. Neutron star mergers are therefore probably responsible for the bulk of the precious substances we call r-process elements throughout the universe.”

 

Story Source:

Materials provided by The Kavli Foundation.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/05/160519120931.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Astronomers confirm faintest early-universe galaxy ever seen

Cosmos by John Hussey


Discovery could help explain how ‘cosmic dark ages’ ended

Scientists have detected and confirmed the faintest early-universe galaxy ever, using the W. M. Keck Observatory on the summit on Mauna Kea in Hawaii. The team detected the galaxy as it was 13 billion years ago.

Composite image of the galaxy cluster from three different filters on the Hubble Space Telescope. The wave charts (insets at left) show spectra of the multiply imaged systems. The fact that they share peaks at the same wavelength shows that they belong to the same source. At bottom right, the Keck I and Keck II Telescopes at Hawaii’s the W. M. Keck Observatory.

Credit: BRADAC/HST/W. M. Keck Observatory

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

An international team of scientists, including two professors and three graduate students from UCLA, has detected and confirmed the faintest early-universe galaxy ever. Using the W. M. Keck Observatory on the summit on Mauna Kea in Hawaii, the researchers detected the galaxy as it was 13 billion years ago. The results were published in the Astrophysical Journal Letters.

Tommaso Treu, a professor of physics and astronomy in the UCLA College and a co-author of the research, said the discovery could be a step toward unraveling one of the biggest mysteries in astronomy: how a period known as the “cosmic dark ages” ended.

The researchers made the discovery using an effect called gravitational lensing to see the incredibly faint object, which was born just after the Big Bang. Gravitational lensing was first predicted by Albert Einstein almost a century ago; the effect is similar to that of an image behind a glass lens appearing distorted because of how the lens bends light.

The detected galaxy was behind a galaxy cluster known as MACS2129.4-0741, which is massive enough to create three different images of the galaxy.

According to the Big Bang theory, the universe cooled as it expanded. As that happened, Treu said, protons captured electrons to form hydrogen atoms, which in turn made the universe opaque to radiation — giving rise to the cosmic dark ages.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Universe – Mapping the Universe

“At some point, a few hundred million years later, the first stars formed and they started to produce ultraviolet light capable of ionizing hydrogen,” Treu said. “Eventually, when there were enough stars, they might have been able to ionize all of the intergalactic hydrogen and create the universe as we see it now.”

That process, called cosmic reionization, happened about 13 billion years ago, but scientists have so far been unable to determine whether there were enough stars to do it or whether more exotic sources, like gas falling onto supermassive black holes, might have been responsible.

“Currently, the most likely suspect is stars within faint galaxies that are too faint to see with our telescopes without gravitational lensing magnification,” Treu said. “This study exploits gravitational lensing to demonstrate that such galaxies exist, and is thus an important step toward solving this mystery.”

The research team was led by Marusa Bradac, a professor at UC Davis. Co-authors include Matthew Malkan, a UCLA professor of physics and astronomy, and UCLA graduate students Charlotte Mason, Takahiro Morishita and Xin Wang.

The galaxy’s magnified spectra were detected independently by both Keck Observatory and Hubble Space Telescope data.

 

Story Source:

Materials provided by University of California – Los Angeles.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/05/160523160706.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Hubble finds clues to the birth of supermassive black holes

Cosmos by John Hussey


Astrophysicists have taken a major step forward in understanding how supermassive black holes formed. Using data from Hubble and two other space telescopes, researchers have found the best evidence yet for the seeds that ultimately grow into these cosmic giants.

This artist’s impression shows a possible seed for the formation of a supermassive black hole. Two of these possible seeds were discovered by an Italian team, using three space telescopes: the NASA Chandra X-ray Observatory, the NASA/ESA Hubble Space Telescope, and the NASA Spitzer Space Telescope.

Credit: NASA/CXC/M. Weiss

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Astrophysicists have taken a major step forward in understanding how supermassive black holes formed. Using data from Hubble and two other space telescopes, Italian researchers have found the best evidence yet for the seeds that ultimately grow into these cosmic giants.

For years astronomers have debated how the earliest generation of supermassive black holes formed very quickly, relatively speaking, after the Big Bang. Now, an Italian team has identified two objects in the early Universe that seem to be the origin of these early supermassive black holes. The two objects represent the most promising black hole seed candidates found so far [1].

The group used computer models and applied a new analysis method to data from the NASA Chandra X-ray Observatory, the NASA/ESA Hubble Space Telescope, and the NASA Spitzer Space Telescope to find and identify the two objects. Both of these newly discovered black hole seed candidates are seen less than a billion years after the Big Bang and have an initial mass of about 100 000 times the Sun.

“Our discovery, if confirmed, would explain how these monster black holes were born,” said Fabio Pacucci, lead author of the study, of Scuola Normale Superiore in Pisa, Italy.

This new result helps to explain why we see supermassive black holes less than one billion years after the Big Bang.

There are two main theories to explain the formation of supermassive black holes in the early Universe. One assumes that the seeds grow out of black holes with a mass about ten to a hundred times greater than our Sun, as expected for the collapse of a massive star. The black hole seeds then grew through mergers with other small black holes and by pulling in gas from their surroundings. However, they would have to grow at an unusually high rate to reach the mass of supermassive black holes already discovered in the billion years young Universe.

The new findings support another scenario where at least some very massive black hole seeds with 100 000 times the mass of the Sun formed directly when a massive cloud of gas collapses [2]. In this case the growth of the black holes would be jump started, and would proceed more quickly.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Black Holes – Super Massive Black Hole at the Center our Galaxy

“There is a lot of controversy over which path these black holes take,” said co-author Andrea Ferrara also of Scuola Normale Superiore. “Our work suggests we are converging on one answer, where black holes start big and grow at the normal rate, rather than starting small and growing at a very fast rate.”

Andrea Grazian, a co-author from the National Institute for Astrophysics in Italy explains: “Black hole seeds are extremely hard to find and confirming their detection is very difficult. However, we think our research has uncovered the two best candidates so far.”

Even though both black hole seed candidates match the theoretical predictions, further observations are needed to confirm their true nature. To fully distinguish between the two formation theories, it will also be necessary to find more candidates.

The team plans to conduct follow-up observations in X-rays and in the infrared range to check whether the two objects have more of the properties expected for black hole seeds. Upcoming observatories, like the NASA/ESA/CSA James Webb Space Telescope and the European Extremely Large Telescope will certainly mark a breakthrough in this field, by detecting even smaller and more distant black holes.

 

Notes

[1] Supermassive black holes contain millions or even billions of times the mass of the Sun. In the modern Universe they can be found in the centre of nearly all large galaxies, including the Milky Way. The supermassive black hole in the centre of the Milky Way has a mass of four million solar masses. The two black hole seed candidates would also be the progenitors of two of the modern supermassive black holes.

[2] Black hole seeds created through the collapse of a massive cloud of gas bypass any other intermediate phases such as the formation and subsequent destruction of a massive star.

 

Story Source:

Materials provided by ESA/Hubble Information Centre.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/05/160524144923.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Scientist suggests possible link between primordial black holes and dark matter

Cosmos by John Hussey


An intriguing alternative view is that dark matter is made of black holes formed during the first second of our universe’s existence, known as primordial black holes. A scientist suggests that this interpretation aligns with our knowledge of cosmic infrared and X-ray background glows and may explain the unexpectedly high masses of merging black holes detected last year.

After masking out all known stars, galaxies and artifacts and enhancing what’s left, an irregular background glow appears. This is the cosmic infrared background (CIB); lighter colors indicate brighter areas. The CIB glow is more irregular than can be explained by distant unresolved galaxies, and this excess structure is thought to be light emitted when the universe was less than a billion years old. Scientists say it likely originated from the first luminous objects to form in the universe, which includes both the first stars and black holes.

Credit: NASA/JPL-Caltech/A. Kashlinsky (Goddard)

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Dark matter is a mysterious substance composing most of the material universe, now widely thought to be some form of massive exotic particle. An intriguing alternative view is that dark matter is made of black holes formed during the first second of our universe’s existence, known as primordial black holes. Now a scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, suggests that this interpretation aligns with our knowledge of cosmic infrared and X-ray background glows and may explain the unexpectedly high masses of merging black holes detected last year.

“This study is an effort to bring together a broad set of ideas and observations to test how well they fit, and the fit is surprisingly good,” said Alexander Kashlinsky, an astrophysicist at NASA Goddard. “If this is correct, then all galaxies, including our own, are embedded within a vast sphere of black holes each about 30 times the sun’s mass.”

In 2005, Kashlinsky led a team of astronomers using NASA’s Spitzer Space Telescope to explore the background glow of infrared light in one part of the sky. The researchers reported excessive patchiness in the glow and concluded it was likely caused by the aggregate light of the first sources to illuminate the universe more than 13 billion years ago. Follow-up studies confirmed that this cosmic infrared background (CIB) showed similar unexpected structure in other parts of the sky.

In 2013, another study compared how the cosmic X-ray background (CXB) detected by NASA’s Chandra X-ray Observatory compared to the CIB in the same area of the sky. The first stars emitted mainly optical and ultraviolet light, which today is stretched into the infrared by the expansion of space, so they should not contribute significantly to the CXB.

Yet the irregular glow of low-energy X-rays in the CXB matched the patchiness of the CIB quite well. The only object we know of that can be sufficiently luminous across this wide an energy range is a black hole. The research team concluded that primordial black holes must have been abundant among the earliest stars, making up at least about one out of every five of the sources contributing to the CIB.

The nature of dark matter remains one of the most important unresolved issues in astrophysics. Scientists currently favor theoretical models that explain dark matter as an exotic massive particle, but so far searches have failed to turn up evidence these hypothetical particles actually exist. NASA is currently investigating this issue as part of its Alpha Magnetic Spectrometer and Fermi Gamma-ray Space Telescope missions.

“These studies are providing increasingly sensitive results, slowly shrinking the box of parameters where dark matter particles can hide,” Kashlinsky said. “The failure to find them has led to renewed interest in studying how well primordial black holes — black holes formed in the universe’s first fraction of a second — could work as dark matter.”

Physicists have outlined several ways in which the hot, rapidly expanding universe could produce primordial black holes in the first thousandths of a second after the Big Bang. The older the universe is when these mechanisms take hold, the larger the black holes can be. And because the window for creating them lasts only a tiny fraction of the first second, scientists expect primordial black holes would exhibit a narrow range of masses.

On Sept. 14, gravitational waves produced by a pair of merging black holes 1.3 billion light-years away were captured by the Laser Interferometer Gravitational-Wave Observatory (LIGO) facilities in Hanford, Washington, and Livingston, Louisiana. This event marked the first-ever detection of gravitational waves as well as the first direct detection of black holes. The signal provided LIGO scientists with information about the masses of the individual black holes, which were 29 and 36 times the sun’s mass, plus or minus about four solar masses. These values were both unexpectedly large and surprisingly similar.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Black Holes – Super Massive Black Hole at the Center our Galaxy

“Depending on the mechanism at work, primordial black holes could have properties very similar to what LIGO detected,” Kashlinsky explained. “If we assume this is the case, that LIGO caught a merger of black holes formed in the early universe, we can look at the consequences this has on our understanding of how the cosmos ultimately evolved.”

In his new paper, published May 24 in The Astrophysical Journal Letters, Kashlinsky analyzes what might have happened if dark matter consisted of a population of black holes similar to those detected by LIGO. The black holes distort the distribution of mass in the early universe, adding a small fluctuation that has consequences hundreds of millions of years later, when the first stars begin to form.

For much of the universe’s first 500 million years, normal matter remained too hot to coalesce into the first stars. Dark matter was unaffected by the high temperature because, whatever its nature, it primarily interacts through gravity. Aggregating by mutual attraction, dark matter first collapsed into clumps called minihaloes, which provided a gravitational seed enabling normal matter to accumulate. Hot gas collapsed toward the minihaloes, resulting in pockets of gas dense enough to further collapse on their own into the first stars. Kashlinsky shows that if black holes play the part of dark matter, this process occurs more rapidly and easily produces the lumpiness of the CIB detected in Spitzer data even if only a small fraction of minihaloes manage to produce stars.

As cosmic gas fell into the minihaloes, their constituent black holes would naturally capture some of it too. Matter falling toward a black hole heats up and ultimately produces X-rays. Together, infrared light from the first stars and X-rays from gas falling into dark matter black holes can account for the observed agreement between the patchiness of the CIB and the CXB.

Occasionally, some primordial black holes will pass close enough to be gravitationally captured into binary systems. The black holes in each of these binaries will, over eons, emit gravitational radiation, lose orbital energy and spiral inward, ultimately merging into a larger black hole like the event LIGO observed.

“Future LIGO observing runs will tell us much more about the universe’s population of black holes, and it won’t be long before we’ll know if the scenario I outline is either supported or ruled out,” Kashlinsky said.

Kashlinsky leads science team centered at Goddard that is participating in the European Space Agency’s Euclid mission, which is currently scheduled to launch in 2020. The project, named LIBRAE, will enable the observatory to probe source populations in the CIB with high precision and determine what portion was produced by black holes.

 

Story Source:

Materials provided by NASA/Goddard Space Flight Center.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/05/160524212015.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Astronomers smash cosmic records to see hydrogen in distant galaxy

Cosmos by John Hussey


An international team of scientists has pushed the limits of radio astronomy to detect a faint signal emitted by hydrogen gas in a galaxy more than five billion light years away — almost double the previous record.Using the Very Large Array of the National Radio Astronomy Observatory in the US, the team observed radio emission from hydrogen in a distant galaxy and found that it would have contained billions of young, massive stars surrounded by clouds of hydrogen gas.

Artist’s impression of the galaxy.

Credit: ICRAR/Peter Ryan

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

An international team of scientists has pushed the limits of radio astronomy to detect a faint signal emitted by hydrogen gas in a galaxy more than five billion light years away — almost double the previous record.

Using the Very Large Array of the National Radio Astronomy Observatory in the US, the team observed radio emission from hydrogen in a distant galaxy and found that it would have contained billions of young, massive stars surrounded by clouds of hydrogen gas.

As the most abundant element in the Universe and the raw fuel for creating stars, hydrogen is used by radio astronomers to detect and understand the makeup of other galaxies.

However, until now, radio telescopes have only been able to detect the emission signature of hydrogen from relatively nearby galaxies.

“Due to the upgrade of the Very Large Array, this is the first time we’ve been able to directly measure atomic hydrogen in a galaxy this far from Earth,” lead author, Dr Ximena Fernández from Rutgers, the State University of New Jersey, said.

“These signals would have begun their journey before our planet even existed, and after five billion years of travelling through space without hitting anything, they’ve fallen into the telescope and allowed us to see this distant galaxy for the very first time.”

As an archaeologist digs down they find older and older objects. The same is true for astronomers — as they build bigger telescopes and develop new techniques to see farther into the Universe, they look further and further back in time.

“This is precisely the goal of the project, to study how gas in galaxies has changed through history,” Dr Fernández said.

“A question we hope to answer is whether galaxies in the past had more gas being turned into stars than galaxies today. Our record breaking find is a galaxy with an unusually large amount of hydrogen.”

This success for the team comes after the first 178 hours of observing time with the Karl G. Jansky Very Large Array (VLA) radio telescope for a new survey of the sky called the ‘COSMOS HI Large Extragalactic Survey’, or CHILES for short.

Once it’s completed the CHILES survey will have collected data from more than 1,000 hours of observing time.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Universe – Mapping the Universe

In a new approach, members of the team including Dr Attila Popping from International Centre for Radio Astronomy Research and the ARC Centre of All-sky Astrophysics (CAASTRO) in Australia are working with Amazon Web Services to process and move the large volumes of data via the ‘cloud’.

“For this project we took tens of terabytes of data from the Very Large Array, and then processed it using Amazon’s cloud-based servers to create an enormous image cube, ready for our team to analyse and explore,” Dr Popping said.

Professor Andreas Wicenec, head of the Data Intensive Astronomy team at the International Centre for Radio Astronomy Research, said the limiting factor for radio astronomers used to be the size of the telescope and the hardware behind it.

“It’s fast becoming more about the data and how you move, store and analyse vast volumes of information,” he said.

“Big science needs a lot of compute power–right now we’re designing systems to manage data for several large facilities around the world and the next generation of radio telescopes, including China’s 500m radio telescope, the Square Kilometre Array and the SKA’s pathfinder telescopes that are already up and running in outback Western Australia.”

The study involved researchers from the US, Australia, the Netherlands, Germany, Korea and Chile, and was published today in the Astrophysical Journal Letters.

The previous record was set in 2014 when two researchers from Swinburne University used the Arecibo radio telescope in Puerto Rico to detect atomic hydrogen in a galaxy three billion light years from Earth.

 

Story Source:

Materials provided by International Centre for Radio Astronomy Research.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/06/160601204608.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

The universe is expanding even faster than expected

Cosmos by John Hussey


Hubble Space Telescope astronomers have discovered that the universe is expanding 5-9% percent faster than expected. They made the discovery by refining the universe’s current expansion rate to unprecedented accuracy, reducing the uncertainty to only 2.4%. The team made the refinements by developing innovative techniques that improved the precision of distance measurements to faraway galaxies. These measurements are fundamental to making more precise calculations of how fast the universe expands with time, a value called the Hubble constant.

This illustration shows the three steps astronomers used to measure the universe’s expansion rate to an unprecedented accuracy, reducing the total uncertainty to 2.4 percent. Astronomers made the measurements by streamlining and strengthening the construction of the cosmic distance ladder, which is used to measure accurate distances to galaxies near and far from Earth. Beginning at left, astronomers use Hubble to measure the distances to a class of pulsating stars called Cepheid Variables, employing a basic tool of geometry called parallax. This is the same technique that surveyors use to measure distances on Earth. Once astronomers calibrate the Cepheids’ true brightness, they can use them as cosmic yardsticks to measure distances to galaxies much farther away than they can with the parallax technique. The rate at which Cepheids pulsate provides an additional fine-tuning to the true brightness, with slower pulses for brighter Cepheids. The astronomers compare the calibrated true brightness values with the stars’ apparent brightness, as seen from Earth, to determine accurate distances. Once the Cepheids are calibrated, astronomers move beyond our Milky Way to nearby galaxies (shown at center). They look for galaxies that contain Cepheid stars and another reliable yardstick, Type Ia supernovae, exploding stars that flare with the same amount of brightness. The astronomers use the Cepheids to measure the true brightness of the supernovae in each host galaxy. From these measurements, the astronomers determine the galaxies’ distances. They then look for supernovae in galaxies located even farther away from Earth. Unlike Cepheids, Type Ia supernovae are brilliant enough to be seen from relatively longer distances. The astronomers compare the true and apparent brightness of distant supernovae to measure out to the distance where the expansion of the universe can be seen (shown at right). They compare those distance measurements with how the light from the supernovae is stretched to longer wavelengths by the expansion of space. They use these two values to calculate how fast the universe expands with time, called the Hubble constant.

Credit: NASA, ESA, A. Feild (STScI), and A. Riess (STScI/JHU)

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Astronomers using NASA’s Hubble Space Telescope have discovered that the universe is expanding 5 percent to 9 percent faster than expected.

“This surprising finding may be an important clue to understanding those mysterious parts of the universe that make up 95 percent of everything and don’t emit light, such as dark energy, dark matter, and dark radiation,” said study leader and Nobel Laureate Adam Riess of the Space Telescope Science Institute and The Johns Hopkins University, both in Baltimore, Maryland.

The results will appear in an upcoming issue of The Astrophysical Journal.

Riess’ team made the discovery by refining the universe’s current expansion rate to unprecedented accuracy, reducing the uncertainty to only 2.4 percent. The team made the refinements by developing innovative techniques that improved the precision of distance measurements to faraway galaxies.

The team looked for galaxies containing both Cepheid stars and Type Ia supernovae. Cepheid stars pulsate at rates that correspond to their true brightness, which can be compared with their apparent brightness as seen from Earth to accurately determine their distance. Type Ia supernovae, another commonly used cosmic yardstick, are exploding stars that flare with the same brightness and are brilliant enough to be seen from relatively longer distances.

By measuring about 2,400 Cepheid stars in 19 galaxies and comparing the observed brightness of both types of stars, they accurately measured their true brightness and calculated distances to roughly 300 Type Ia supernovae in far-flung galaxies.

The team compared those distances with the expansion of space as measured by the stretching of light from receding galaxies. The team used these two values to calculate how fast the universe expands with time, or the Hubble constant.

The improved Hubble constant value is 73.2 kilometers per second per megaparsec. (A megaparsec equals 3.26 million light-years.) The new value means the distance between cosmic objects will double in another 9.8 billion years.

This refined calibration presents a puzzle, however, because it does not quite match the expansion rate predicted for the universe from its trajectory seen shortly after the Big Bang. Measurements of the afterglow from the Big Bang by NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) and the European Space Agency’s Planck satellite mission yield predictions for the Hubble constant that are 5 percent and 9 percent smaller, respectively.

“If we know the initial amounts of stuff in the universe, such as dark energy and dark matter, and we have the physics correct, then you can go from a measurement at the time shortly after the big bang and use that understanding to predict how fast the universe should be expanding today,” said Riess. “However, if this discrepancy holds up, it appears we may not have the right understanding, and it changes how big the Hubble constant should be today.”

Comparing the universe’s expansion rate with WMAP, Planck, and Hubble is like building a bridge, Riess explained. On the distant shore are the cosmic microwave background observations of the early universe. On the nearby shore are the measurements made by Riess’ team using Hubble. “You start at two ends, and you expect to meet in the middle if all of your drawings are right and your measurements are right,” Riess said. “But now the ends are not quite meeting in the middle and we want to know why.”

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Telescopes – Hubble – 15 Years of Discovery

There are a few possible explanations for the universe’s excessive speed. One possibility is that dark energy, already known to be accelerating the universe, may be shoving galaxies away from each other with even greater — or growing — strength.

Another idea is that the cosmos contained a new subatomic particle in its early history that traveled close to the speed of light. Such speedy particles are collectively referred to as “dark radiation” and include previously known particles like neutrinos. More energy from additional dark radiation could be throwing off the best efforts to predict today’s expansion rate from its post-big bang trajectory.

The boost in acceleration could also mean that dark matter possesses some weird, unexpected characteristics. Dark matter is the backbone of the universe upon which galaxies built themselves up into the large-scale structures seen today.

And finally, the speedier universe may be telling astronomers that Einstein’s theory of gravity is incomplete. “We know so little about the dark parts of the universe, it’s important to measure how they push and pull on space over cosmic history,” said Lucas Macri of Texas A&M University in College Station, a key collaborator on the study.

The Hubble observations were made with Hubble’s sharp-eyed Wide Field Camera 3 (WFC3), and were conducted by the Supernova H0 for the Equation of State (SH0ES) team, which works to refine the accuracy of the Hubble constant to a precision that allows for a better understanding of the universe’s behavior.

The SH0ES Team is still using Hubble to reduce the uncertainty in the Hubble constant even more, with a goal to reach an accuracy of 1 percent. Current telescopes such as the European Space Agency’s Gaia satellite, and future telescopes such as the James Webb Space Telescope (JWST), an infrared observatory, and the Wide Field Infrared Space Telescope (WFIRST), also could help astronomers make better measurements of the expansion rate.

Before Hubble was launched in 1990, the estimates of the Hubble constant varied by a factor of two. In the late 1990s the Hubble Space Telescope Key Project on the Extragalactic Distance Scale refined the value of the Hubble constant to within an error of only 10 percent, accomplishing one of the telescope’s key goals. The SH0ES team has reduced the uncertainty in the Hubble constant value by 76 percent since beginning its quest in 2005.

 

Story Source:

Materials provided by Space Telescope Science Institute (STScI).

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/06/160602122506.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here