Possible Explanation for the Dominance of Matter Over Antimatter in the Universe

Cosmos by John Hussey

 

Neutrinos and antineutrinos, sometimes called ghost particles because difficult to detect, can transform from one type to another. The international T2K Collaboration announces a first indication that the dominance of matter over antimatter may originate from the fact that neutrinos and antineutrinos behave differently during those oscillations. This is an important milestone towards the understanding of our Universe.

An electron-neutrino interaction observed by the T2K experiment. The neutrino interacts with a water molecule in the detector volume producing an electron which in turn emits Cherenkov light while travelling across the detector. This light is collected by special photo-sensors and converted into a measurable electric signal.

Credit: © Albert Einstein Center for Fundamental Physics (AEC), Laboratory for High Energy Physics

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Neutrinos and antineutrinos, sometimes called ghost particles because difficult to detect, can transform from one type to another. The international T2K Collaboration announces a first indication that the dominance of matter over antimatter may originate from the fact that neutrinos and antineutrinos behave differently during those oscillations. This is an important milestone towards the understanding of our Universe. A team of particle physicists from the University of Bern provided important contributions to the experiment.

The Universe is primarily made of matter and the apparent lack of antimatter is one of the most intriguing questions of today’s science. The T2K collaboration, with participation of the group of the University of Bern, announced today in a colloquium held at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, that it found indication that the symmetry between matter and antimatter (so called “CP-Symmetry”) is violated for neutrinos with 95% probability.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

 

View Sample Video – Cosmology – Universe – Dark Matter and Dark Energy

Different Transformation of Neutrinos and Antineutrinos

Neutrinos are elementary particles which travel through matter almost without interaction. They appear in three different types: electron- muon- and tau-neutrinos and their respective antiparticle (antineutrinos). In 2013 T2K discovered a new type of transformation among neutrinos, showing that muon-neutrinos transform (oscillate) into electron-neutrinos while travelling in space and time. The outcome of the latest T2K study rejects with 95% probability the hypothesis that the analogous transformation from muon-antineutrinos to electron-antineutrinos takes place with identical chance. This is a first indication that the symmetry between matter and antimatter is violated in neutrino oscillations and therefore neutrinos also play a role in the creation of the matter-antimatter asymmetry in the universe.

“This result is among the most important findings in neutrino physics over the last years,” said Prof. Antonio Ereditato, director of the Laboratory of High Energy Physics of the University of Bern and leader of the Bern T2K group, “and it is opening the way to even more exciting achievements, pointing to the existence of a tiny but measurable effect.” Ereditato added: “Nature seems to indicate that neutrinos can be responsible for the observed supremacy of matter over antimatter in the Universe. What we measured justifies our current efforts in preparing the next scientific enterprise, DUNE, the ultimate neutrino detector in USA, which should allow reaching a definitive discovery.”

In the T2K experiment a muon-neutrino beam is produced at the Proton Accelerator Research Complex (J-PARC) in Tokai on the east coast of Japan and is detected 295 kilometres away by the gigantic Super-Kamiokande underground detector (“T2K” stands for “Tokai to Kamiokande”). The neutrino beam needs to be fully characterized immediately after production, that means before neutrinos start to oscillate. For this purpose, the ND280 detector was built and installed close to the neutrino departing point.

Researchers from the University of Bern, together with colleagues from Geneva and ETH Zurich, and other international institutions, contributed to the design, realization and operation of ND280. The group of Bern, in particular, took care of the large magnet surrounding the detector and built and operated the so-called muon monitor, a device needed to measure the intensity and the energy spectrum of the muon particles produced together with neutrinos. The Bern group is currently very active in determining the probability of interaction of neutrinos with the ND280 apparatus: an important ingredient to reach high-precision measurements such as the one reported here.

 

Story Source:

Materials provided by University of Bern.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2017/08/170804083109.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Primordial Black Holes May Have Helped to Forge Heavy Elements

Cosmos by John Hussey

 

Astronomers like to say we are the byproducts of stars, stellar furnaces that long ago fused hydrogen and helium into the elements needed for life through the process of stellar nucleosynthesis. But what about the heavier elements in the periodic chart, elements such as gold, platinum and uranium? Astronomers believe most of these “r-process elements” — elements much heavier than iron — were created, either in the aftermath of the collapse of massive stars and the associated supernova explosions, or in the merging of binary neutron star systems.

Artist’s depiction of a neutron star. Credit

Credit: NASA

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Astronomers like to say we are the byproducts of stars, stellar furnaces that long ago fused hydrogen and helium into the elements needed for life through the process of stellar nucleosynthesis.

As the late Carl Sagan once put it: “The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of star stuff.”

But what about the heavier elements in the periodic chart, elements such as gold, platinum and uranium?

Astronomers believe most of these “r-process elements” — elements much heavier than iron — were created, either in the aftermath of the collapse of massive stars and the associated supernova explosions, or in the merging of binary neutron star systems.

“A different kind of furnace was needed to forge gold, platinum, uranium and most other elements heavier than iron,” explained George Fuller, a theoretical astrophysicist and professor of physics who directs UC San Diego’s Center for Astrophysics and Space Sciences. “These elements most likely formed in an environment rich with neutrons.”

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

 

View Sample Video – Cosmology – Black Holes – Milky Way’s Super Massive Black Hole is having dinner

In a paper published August 7 in the journal Physical Review Letters, he and two other theoretical astrophysicists at UCLA — Alex Kusenko and Volodymyr Takhistov — offer another means by which stars could have produced these heavy elements: tiny black holes that came into contact with and are captured by neutron stars, and then destroy them.

Neutron stars are the smallest and densest stars known to exist, so dense that a spoonful of their surface has an equivalent mass of three billion tons.

Tiny black holes are more speculative, but many astronomers believe they could be a byproduct of the Big Bang and that they could now make up some fraction of the “dark matter” — the unseen, nearly non-interacting stuff that observations reveal exists in the universe.

If these tiny black holes follow the distribution of dark matter in space and co-exist with neutron stars, Fuller and his colleagues contend in their paper that some interesting physics would occur.

They calculate that, in rare instances, a neutron star will capture such a black hole and then devoured from the inside out by it. This violent process can lead to the ejection of some of the dense neutron star matter into space.

“Small black holes produced in the Big Bang can invade a neutron star and eat it from the inside,” Fuller explained. “In the last milliseconds of the neutron star’s demise, the amount of ejected neutron-rich material is sufficient to explain the observed abundances of heavy elements.”

“As the neutron stars are devoured,” he added, “they spin up and eject cold neutron matter, which decompresses, heats up and make these elements.”

This process of creating the periodic table’s heaviest elements would also provide explanations for a number of other unresolved puzzles in the universe and within our own Milky Way galaxy.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

“Since these events happen rarely, one can understand why only one in ten dwarf galaxies is enriched with heavy elements,” said Fuller. “The systematic destruction of neutron stars by primordial black holes is consistent with the paucity of neutron stars in the galactic center and in dwarf galaxies, where the density of black holes should be very high.”

In addition, the scientists calculated that ejection of nuclear matter from the tiny black holes devouring neutron stars would produce three other unexplained phenomenon observed by astronomers.

“They are a distinctive display of infrared light (sometimes termed a “kilonova”), a radio emission that may explain the mysterious Fast Radio Bursts from unknown sources deep in the cosmos, and the positrons detected in the galactic center by X-ray observations,” said Fuller. “Each of these represent long-standing mysteries. It is indeed surprising that the solutions of these seemingly unrelated phenomena may be connected with the violent end of neutron stars at the hands of tiny black holes.”

Funding for this project was provided by the National Science Foundation (PHY-1614864) at UC San Diego and by the U.S. Department of Energy (DE-SC0009937) at UCLA. Alex Kusenko was also supported, in part, by the World Premier International Research Center Initiative (WPI), MEXT, Japan.

 

Story Source:

Materials provided by University of California – San Diego.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2017/08/170804131816.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

New Theory on the Origin of Dark Matter

Cosmos by John Hussey

 

Scientists have come up with a new theory on how dark matter may have been formed shortly after the origin of the universe. This new model proposes an alternative to the WIMP paradigm that is the subject of various experiments in current research.

In the new dark matter model, the Higgs particle has different properties to those in the standard model of particle physics. The figure shows the energy of the Higgs particle as a function of the model parameters.

Credit: Ill./©: Michael Baker, JGU

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Only a small part of the universe consists of visible matter. By far the largest part is invisible and consists of dark matter and dark energy. Very little is known about dark energy, but there are many theories and experiments on the existence of dark matter designed to find these as yet unknown particles. Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have now come up with a new theory on how dark matter may have been formed shortly after the origin of the universe. This new model proposes an alternative to the WIMP paradigm that is the subject of various experiments in current research.

Dark matter is present throughout the universe, forming galaxies and the largest known structures in the cosmos. It makes up around 23 percent of our universe, whereas the particles visible to us that make up the stars, planets, and even life on Earth represent only about four percent of it. The current assumption is that dark matter is a cosmological relic that has essentially remained stable since its creation. “We have called this assumption into question, showing that at the beginning of the universe dark matter may have been unstable,” explained Dr. Michael Baker from the Theoretical High Energy Physics (THEP) group at the JGU Institute of Physics. This instability also indicates the existence of a new mechanism that explains the observed quantity of dark matter in the cosmos.

The stability of dark matter is usually explained by a symmetry principle. However, in their paper, Dr. Michael Baker and Prof. Joachim Kopp demonstrate that the universe may have gone through a phase during which this symmetry was broken. This would mean that it is possible for the hypothetical dark matter particle to decay. During the electroweak phase transition, the symmetry that stabilizes dark matter would have been re-established, enabling it to continue to exist in the universe to the present day.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

 

View Sample Video – Cosmology – Universe – Dark Matter and Dark Energy

With their new theory, Baker and Kopp have introduced a new principle into the debate about the nature of dark matter that offers an alternative to the widely accepted WIMP theory. Up to now, WIMPs, or weakly interacting massive particles, have been regarded as the most likely components of dark matter, and experiments involving heavily shielded underground detectors have been carried out to look for them. “The absence of any convincing signals caused us to start looking for alternatives to the WIMP paradigm,” said Kopp.

The two physicists claim that the new mechanism they propose may be connected with the apparent imbalance between matter and antimatter in the cosmos and could leave an imprint which would be detected in future experiments on gravitational waves. In their paper published in the scientific journal Physical Review Letters, Baker and Kopp also indicate the prospects of finding proof of their new principle at CERN’s LHC particle accelerator and other experimental facilities.

 

Story Source:

Materials provided by Johannes Gutenberg Universitaet Mainz.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2017/08/170808145931.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Where Is Everybody? The Implications of Cosmic Silence

Cosmos by John Hussey

 

If the potential for intelligent life to exist somewhere in the universe is so large, then where is everybody? In a new paper, an astrophysicist argues that species such as ours go extinct soon after attaining high levels of technology.

This dwarf galaxy is named NGC 5949. It sits at a distance of around 44 million light-years from Earth, placing it within the Milky Way’s cosmic neighborhood.

Credit: ESA/Hubble & NASA

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

The universe is incomprehensibly vast, with billions of other planets circling billions of other stars. The potential for intelligent life to exist somewhere out there should be enormous.

So, where is everybody?

That’s the Fermi paradox in a nutshell. Daniel Whitmire, a retired astrophysicist who teaches mathematics at the University of Arkansas, once thought the cosmic silence indicated we as a species lagged far behind.

“I taught astronomy for 37 years,” said Whitmire. “I used to tell my students that by statistics, we have to be the dumbest guys in the galaxy. After all we have only been technological for about 100 years while other civilizations could be more technologically advanced than us by millions or billions of years.”

Recently, however, he’s changed his mind. By applying a statistical concept called the principle of mediocrity — the idea that in the absence of any evidence to the contrary we should consider ourselves typical, rather than atypical — Whitmire has concluded that instead of lagging behind, our species may be average. That’s not good news.

In a paper published Aug. 3 in the International Journal of Astrobiology, Whitmire argues that if we are typical, it follows that species such as ours go extinct soon after attaining technological knowledge. (The paper is also available on Whitmire’s website.)

The argument is based on two observations: We are the first technological species to evolve on Earth, and we are early in our technological development. (He defines “technological” as a biological species that has developed electronic devices and can significantly alter the planet.)

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4


The first observation seems obvious, but as Whitmire notes in his paper, researchers believe the Earth should be habitable for animal life at least a billion years into the future. Based on how long it took proto-primates to evolve into a technological species, that leaves enough time for it to happen again up to 23 times. On that time scale, there could have been others before us, but there’s nothing in the geologic record to indicate we weren’t the first. “We’d leave a heck of a fingerprint if we disappeared overnight,” Whitmire noted.

By Whitmire’s definition we became “technological” after the industrial revolution and the invention of radio, or roughly 100 years ago. According to the principle of mediocrity, a bell curve of the ages of all extant technological civilizations in the universe would put us in the middle 95 percent. In other words, technological civilizations that last millions of years, or longer, would be highly atypical. Since we are first, other typical technological civilizations should also be first. The principle of mediocrity allows no second acts. The implication is that once species become technological, they flame out and take the biosphere with them.

Whitmire argues that the principle holds for two standard deviations, or in this case about 200 years. But because the distribution of ages on a bell curve skews older (there is no absolute upper limit, but the age can’t be less than zero), he doubles that figure and comes up with 500 years, give or take. The assumption of a bell-shaped curve is not absolutely necessary. Other assumptions give roughly similar results.

There’s always the possibility that we are atypical and our species’ lifespan will fall somewhere in the outlying 5 percent of the bell curve. If that’s the case, we’re back to the nugget of wisdom Whitmire taught his astronomy students for more than three decades.

“If we’re not typical then my initial observation would be correct,” he said. “We would be the dumbest guys in the galaxy by the numbers.”

 

Story Source:

Materials provided by University of Arkansas, Fayetteville.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2017/08/170811185455.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Ultraviolet-Light Survey of Nearby Galaxies

Cosmos by John Hussey

 

Capitalizing on the unparalleled sharpness and spectral range of NASA’s Hubble Space Telescope, an international team of astronomers is releasing the most comprehensive, high-resolution ultraviolet-light survey of nearby star-forming galaxies.

These six images represent the variety of star-forming regions in nearby galaxies. The galaxies are part of the Hubble Space Telescope’s Legacy ExtraGalactic UV Survey (LEGUS), the sharpest, most comprehensive ultraviolet-light survey of star-forming galaxies in the nearby universe. The six images consist of two dwarf galaxies (UGC 5340 and UGCA 281) and four large spiral galaxies (NGC 3368, NGC 3627, NGC 6744, and NGC 4258). The images are a blend of ultraviolet light and visible light from Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys.

Credit: NASA/ESA/LEGUS team

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Capitalizing on the unparalleled sharpness and spectral range of NASA’s Hubble Space Telescope, an international team of astronomers is releasing the most comprehensive, high-resolution ultraviolet-light survey of nearby star-forming galaxies.

The researchers combined new Hubble observations with archival Hubble images for 50 star-forming spiral and dwarf galaxies in the local universe, offering a large and extensive resource for understanding the complexities of star formation and galaxy evolution. The project, called the Legacy ExtraGalactic UV Survey (LEGUS), has amassed star catalogs for each of the LEGUS galaxies and cluster catalogs for 30 of the galaxies, as well as images of the galaxies themselves. The data provide detailed information on young, massive stars and star clusters, and how their environment affects their development.

“There has never before been a star cluster and a stellar catalog that included observations in ultraviolet light,” explained survey leader Daniela Calzetti of the University of Massachusetts, Amherst. “Ultraviolet light is a major tracer of the youngest and hottest star populations, which astronomers need to derive the ages of stars and get a complete stellar history. The synergy of the two catalogs combined offers an unprecedented potential for understanding star formation.”

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

 

View Sample Video – Cosmology – Telescopes – Hubble – 15 Years of Discovery

How stars form is still a vexing question in astronomy. “Much of the light we get from the universe comes from stars, and yet we still don’t understand many aspects of how stars form,” said team member Elena Sabbi of the Space Telescope Science Institute in Baltimore, Maryland. “This is even key to our existence — we know life wouldn’t be here if we didn’t have a star around.”

The research team carefully selected the LEGUS targets from among 500 galaxies, compiled in ground-based surveys, located between 11 million and 58 million light-years from Earth. Team members chose the galaxies based on their mass, star-formation rate, and abundances of elements that are heavier than hydrogen and helium. The catalog of ultraviolet objects collected by NASA’s Galaxy Evolution Explorer (GALEX) spacecraft also helped lay the path for the Hubble study.

The team used Hubble’s Wide Field Camera 3 and the Advanced Camera for Surveys over a one-year period to snap visible- and ultraviolet-light images of the galaxies and their most massive young stars and star clusters. The researchers also added archival visible-light images to provide a complete picture.

The star cluster catalogs contain about 8,000 young clusters whose ages range from 1 million to roughly 500 million years old. These stellar groupings are as much as 10 times more massive than the largest clusters seen in our Milky Way galaxy.

The star catalogs comprise about 39 million stars that are at least five times more massive than our Sun. Stars in the visible-light images are between 1 million and several billion years old; the youngest stars, those between 1 million and 100 million years old, shine prominently in ultraviolet light.

The Hubble data provide all of the information to analyze these galaxies, the researchers explained. “We also are offering computer models to help astronomers interpret the data in the star and cluster catalogs,” Sabbi said. “Researchers, for example, can investigate how star formation occurred in one specific galaxy or a set of galaxies. They can correlate the properties of the galaxies with their star formation. They can derive the star-formation history of the galaxies. The ultraviolet-light images may also help astronomers identify the progenitor stars of supernovas found in the data.”

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

One of the key questions the survey may help astronomers answer is the connection between star formation and the major structures, such as spiral arms, that make up a galaxy.

“When we look at a spiral galaxy, we usually don’t just see a random distribution of stars,” Calzetti said. “It’s a very orderly structure, whether it’s spiral arms or rings, and that’s particularly true with the youngest stellar populations. On the other hand, there are multiple competing theories to connect the individual stars in individual star clusters to these ordered structures.

“By seeing galaxies in very fine detail — the star clusters — while also showing the connection to the larger structures, we are trying to identify the physical parameters underlying this ordering of stellar populations within galaxies. Getting the final link between gas and star formation is key for understanding galaxy evolution.”

Team member Linda Smith of the European Space Agency (ESA) and the Space Telescope Science Institute added: “We’re looking at the effects of the environment, particularly with star clusters, and how their survival is linked to the environment around them.”

The LEGUS survey will also help astronomers interpret views of galaxies in the distant universe, where the ultraviolet glow from young stars is stretched to infrared wavelengths due to the expansion of space. “The data in the star and cluster catalogs of these nearby galaxies will help pave the way for what we see with NASA’s upcoming infrared observatory, the James Webb Space Telescope, developed in partnership with ESA and the Canadian Space Agency (CSA),” Sabbi said.

Webb observations would be complementary to the LEGUS views. The space observatory will penetrate dusty stellar cocoons to reveal the infrared glow of infant stars, which cannot be seen in visible- and ultraviolet-light images. “Webb will be able to see how star formation propagates over a galaxy,” Sabbi continued. “If you have information on the gas properties, you can really connect the points and see where, when, and how star formation happens.”

 

Story Source:

Materials provided by NASA/Goddard Space Flight Center.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2018/05/180517142532.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Stars Forming 250 Million Years After Big Bang

Cosmos by John Hussey

 

Astronomers have used observations from the Atacama Large Millimeter/submillimeter Array (ALMA) and ESO’s Very Large Telescope (VLT) to determine that star formation in the very distant galaxy MACS1149-JD1 started at an unexpectedly early stage, only 250 million years after the Big Bang. This discovery also represents the most distant oxygen ever detected in the universe and the most distant galaxy ever observed by ALMA or the VLT.

This image shows the galaxy cluster MACS J1149.5+2223 taken with the NASA/ESA Hubble Space Telescope; the inset image is the very distant galaxy MACS1149-JD1, seen as it was 13.3 billion years ago and observed with ALMA. Here, the oxygen distribution detected with ALMA is depicted in red.

Credit: ALMA (ESO/NAOJ/NRAO), NASA/ESA Hubble Space Telescope, W. Zheng (JHU), M. Postman (STScI), the CLASH Team, Hashimoto et al.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

An international team of astronomers used ALMA to observe a distant galaxy called MACS1149-JD1. They detected a very faint glow emitted by ionised oxygen in the galaxy. As this infrared light travelled across space, the expansion of the Universe stretched it to wavelengths more than ten times longer by the time it reached Earth and was detected by ALMA. The team inferred that the signal was emitted 13.3 billion years ago (or 500 million years after the Big Bang), making it the most distant oxygen ever detected by any telescope [1]. The presence of oxygen is a clear sign that there must have been even earlier generations of stars in this galaxy.

“I was thrilled to see the signal of the distant oxygen in the ALMA data,” says Takuya Hashimoto, the lead author of the new paper and a researcher at both Osaka Sangyo University and the National Astronomical Observatory of Japan . “This detection pushes back the frontiers of the observable Universe.”

In addition to the glow from oxygen picked up by ALMA, a weaker signal of hydrogen emission was also detected by ESO’s Very Large Telescope (VLT). The distance to the galaxy determined from this observation is consistent with the distance from the oxygen observation. This makes MACS1149-JD1 the most distant galaxy with a precise distance measurement and the most distant galaxy ever observed with ALMA or the VLT.

“This galaxy is seen at a time when the Universe was only 500 million years old and yet it already has a population of mature stars,” explains Nicolas Laporte, a researcher at University College London (UCL) in the UK and second author of the new paper. “We are therefore able to use this galaxy to probe into an earlier, completely uncharted period of cosmic history.”

For a period after the Big Bang there was no oxygen in the Universe; it was created by the fusion processes of the first stars and then released when these stars died. The detection of oxygen in MACS1149-JD1 indicates that these earlier generations of stars had been already formed and expelled oxygen by just 500 million years after the beginning of the Universe.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

 

View Sample Video – Cosmology – Universe – Seven Ages of Starlight

But when did this earlier star formation occur? To find out, the team reconstructed the earlier history of MACS1149-JD1 using infrared data taken with the NASA/ESA Hubble Space Telescope and the NASA Spitzer Space Telescope. They found that the observed brightness of the galaxy is well-explained by a model where the onset of star formation corresponds to only 250 million years after the Universe began [2].

The maturity of the stars seen in MACS1149-JD1 raises the question of when the very first galaxies emerged from total darkness, an epoch astronomers romantically term “cosmic dawn.” By establishing the age of MACS1149-JD1, the team has effectively demonstrated that galaxies existed earlier than those we can currently directly detect.

Richard Ellis, senior astronomer at UCL and co-author of the paper, concludes: “Determining when cosmic dawn occurred is akin to the Holy Grail of cosmology and galaxy formation. With these new observations of MACS1149-JD1 we are getting closer to directly witnessing the birth of starlight! Since we are all made of processed stellar material, this is really finding our own origins.”

 

Notes

[1] ALMA has set the record for detecting the most distant oxygen several times. In 2016, Akio Inoue at Osaka Sangyo University and his colleagues used ALMA to find a signal of oxygen emitted 13.1 billion years ago. Several months later, Nicolas Laporte of University College London used ALMA to detect oxygen 13.2 billion years ago. Now, the two teams combined their efforts and achieved this new record, which corresponds to a redshift of 9.1.

 

[2] This corresponds to a redshift of about 15.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

More information

 

These results are published in a paper entitled: “The onset of star formation 250 million years after the Big Bang,” by T. Hashimoto et al., to appear in the journal Nature on 17 May 2018.

The research team members are: Takuya Hashimoto (Osaka Sangyo University/National Astronomical Observatory of Japan, Japan), Nicolas Laporte (University College London, United Kingdom), Ken Mawatari (Osaka Sangyo University, Japan), Richard S. Ellis (University College London, United Kingdom), Akio. K. Inoue (Osaka Sangyo University, Japan), Erik Zackrisson (Uppsala University, Sweden), Guido Roberts-Borsani (University College London, United Kingdom), Wei Zheng (Johns Hopkins University, Baltimore, Maryland, United States), Yoichi Tamura (Nagoya University, Japan), Franz E. Bauer (Pontificia Universidad Católica de Chile, Santiago, Chile), Thomas Fletcher (University College London, United Kingdom), Yuichi Harikane (The University of Tokyo, Japan), Bunyo Hatsukade (The University of Tokyo, Japan), Natsuki H. Hayatsu (The University of Tokyo, Japan; ESO, Garching, Germany), Yuichi Matsuda (National Astronomical Observatory of Japan/SOKENDAI, Japan), Hiroshi Matsuo (National Astronomical Observatory of Japan/SOKENDAI, Japan, Sapporo, Japan), Takashi Okamoto (Hokkaido University, Sapporo, Japan), Masami Ouchi (The University of Tokyo, Japan), Roser Pelló (Université de Toulouse, France), Claes-Erik Rydberg (Universität Heidelberg, Germany), Ikkoh Shimizu (Osaka University, Japan), Yoshiaki Taniguchi (The Open University of Japan, Chiba, Japan), Hideki Umehata (The University of Tokyo, Japan) and Naoki Yoshida (The University of Tokyo, Japan).

 

Story Source:

 

Materials provided by ESO.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2018/05/180516131214.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Fastest-Growing Black Hole Known in Space

Cosmos by John Hussey

Astronomers have found the fastest-growing black hole known in the universe, describing it as a monster that devours a mass equivalent to our sun every two days.

Computer-simulated image of a supermassive black hole.

Credit: NASA, ESA, and D. Coe, J. Anderson, and R. van der Marel (STScI) [link]

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Astronomers at ANU have found the fastest-growing black hole known in the Universe, describing it as a monster that devours a mass equivalent to our sun every two days.

The astronomers have looked back more than 12 billion years to the early dark ages of the Universe, when this supermassive black hole was estimated to be the size of about 20 billion suns with a one per cent growth rate every one million years.

“This black hole is growing so rapidly that it’s shining thousands of times more brightly than an entire galaxy, due to all of the gases it sucks in daily that cause lots of friction and heat,” said Dr Wolf from the ANU Research School of Astronomy and Astrophysics.

“If we had this monster sitting at the centre of our Milky Way galaxy, it would appear 10 times brighter than a full moon. It would appear as an incredibly bright pin-point star that would almost wash out all of the stars in the sky.”

Dr Wolf said the energy emitted from this newly discovered supermassive black hole, also known as a quasar, was mostly ultraviolet light but also radiated x-rays.

“Again, if this monster was at the centre of the Milky Way it would likely make life on Earth impossible with the huge amounts of x-rays emanating from it,” he said.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

 

View Sample Video – Cosmology – Black Holes – The Largest Black Holes in the Universe

The SkyMapper telescope at the ANU Siding Spring Observatory detected this light in the near-infrared, as the light waves had red-shifted over the billions of light years to Earth.

“As the Universe expands, space expands and that stretches the light waves and changes their colour,” Dr Wolf said.

“These large and rapidly-growing blackholes are exceedingly rare, and we have been searching for them with SkyMapper for several months now. The European Space Agency’s Gaia satellite, which measures tiny motions of celestial objects, helped us find this supermassive black hole.”

Dr Wolf said the Gaia satellite confirmed the object that they had found was sitting still, meaning that it was far away and it was a candidate to be a very large quasar.

The discovery of the new supermassive black hole was confirmed using the spectrograph on the ANU 2.3 metre telescope to split colours into spectral lines.

“We don’t know how this one grew so large, so quickly in the early days of the Universe,” Dr Wolf said.

“The hunt is on to find even faster-growing black holes.”

Dr Wolf said as these kinds of black holes shine, they can be used as beacons to see and study the formation of elements in the early galaxies of the Universe.

“Scientists can see the shadows of objects in front of the supermassive black hole,” he said.

“Fast-growing supermassive black holes also help to clear the fog around them by ionising gases, which makes the Universe more transparent.”

Dr Wolf said instruments on very large ground-based telescopes being built over the next decade would be a

 

Story Source:

Materials provided by Australian National University.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2018/05/180516105218.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Cosmic Velocity Web: Motions of Thousands of Galaxies Mapped

Cosmos by John Hussey

 

The cosmic web — the distribution of matter on the largest scales in the universe — has usually been defined through the distribution of galaxies. Now, a new study by a team of astronomers demonstrates a novel approach. Instead of using galaxy positions, they mapped the motions of thousands of galaxies.

The cosmic velocity web is represented by surfaces of knots in red and surfaces of filaments in gray. The black lines with arrows illustrate local velocity flows within filaments and toward knots. The Laniakea Supercluster basin of attraction that includes our Milky Way galaxy is represented by a blue surface. The region being displayed extends across one billion light years. Credit: Daniel Pomarede, Yehuda Hoffman, R. Brent Tully and Helene Courtois.

Credit: Daniel Pomarede, Yehuda Hoffman, R. Brent Tully, Helene Courtois

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

The cosmic web — the distribution of matter on the largest scales in the universe — has usually been defined through the distribution of galaxies. Now, a new study by a team of astronomers from France, Israel and Hawaii demonstrates a novel approach. Instead of using galaxy positions, they mapped the motions of thousands of galaxies. Because galaxies are pulled toward gravitational attractors and move away from empty regions, these motions allowed the team to locate the denser matter in clusters and filaments and the absence of matter in regions called voids.

Matter was distributed almost homogeneously in the very early universe, with only miniscule variations in density. Over the 14-billion-year history of the universe, gravity has been acting to pull matter together in some places and leave other places more and more empty. Today, the matter forms a network of knots and connecting filaments referred to as the cosmic web. Most of this matter is in a mysterious form, the so-called “dark matter.” Galaxies have formed at the highest concentrations of matter and act as lighthouses illuminating the underlying cosmic structure.

The newly defined cosmic velocity web defines the structure of the universe from velocity information alone. In those regions with abundant observations, the structure of the velocity web and the web inferred from the locations of the galaxy lighthouses are similar. This agreement provides strong confirmation of the fundamental idea that structure developed from the growth of initially tiny fluctuations through gravitational attraction.

The cosmic velocity web analysis was led by Daniel Pomarede, Atomic Energy Center, France, with the collaboration of Helene Courtois at the University of Lyon, France; Yehuda Hoffman at the Hebrew University, Israel; and Brent Tully at the University of Hawaii’s Institute for Astronomy.

“With the motions of the galaxies, we can infer where all of the mass is located: the galaxies and the 5 times more abundant transparent matter (usually wrongly called dark matter). This total gravitating mass, together with the expansion of the universe, is responsible for the motions that create the architecture of the universe. The gravity from galaxies alone cannot create this network we see,” said Dr. Courtois.

Dr. Tully adds, “Moreover, a wide swath of the universe is hidden behind the obscuring disk of our own Milky Way galaxy. Our reconstruction of structure with the velocity web is revealing for the first time filaments of matter that stretch all the way around the sky and are easily followed through these regions of obscuration.”

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

 

View Sample Video – Cosmology – Universe – Mapping the Universe

This definition of the cosmic velocity web was made possible by the large and coherent collection of galaxy distances and velocities in the Cosmicflows series. The current analysis is based on a study of 8,000 galaxies in the second release of Cosmicflows. The third release, with over twice as many galaxy distances and velocities is already available, and will reveal the cosmic velocity web in increasingly rich detail.

The key element of the program is the acquisition of good distances to galaxies. Several methods are used, such as exploiting the known luminosities of old stars that are just beginning to burn Helium in their cores, and the relationship between the rotation speed of galaxies and the number of stars they possess. The observations have involved dozens of telescopes around the world and in space and at wavelengths from visible light through the infrared to radio.

“The velocity web method for mapping the cosmos is analogous to using plate tectonics in geology. It helps understand not just the current layout of the universe, but also the movement of the invisible underlying masses responsible for that topology,” said Dr. Courtois.

The team has produced an extensive video demonstrating the cosmic velocity web. It first explains the concepts underlying the cosmic velocity web reconstruction, followed by a description of its major elements. The video then shows how cosmic flows are organized within its structure, and how the basin of attraction of the recently mapped Laniakea Supercluster resides within its elements. In the final sequence, the viewer enters an immersive exploration of the filamentary structure of the local universe, navigating inside the filaments and visiting the major nodes such as the Great Attractor. The 11-minute video is linked below and available at https://vimeo.com/pomarede/vweb.

The 3-dimensional map can also be explored in an interactive visualization, using the free online Sketchfab platform. This is a powerful tool to visualize interactively the structure from any viewpoint and compare it with the distribution of galaxies; one can dive inside the filaments and explore them in immersion. With appropriate virtual reality hardware, it can also be used in VR mode. This visualization marks a milestone as the first time such an interactive dataset will be embedded in the online version of the scientific article appearing in the Astrophysical Journal. Everyone is invited to interact with the data below, or at https://skfb.ly/667Jr.

 

Story Source:

Materials provided by University of Hawaii at Manoa

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2017/08/170815095132.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Could a multiverse be hospitable to life?

Cosmos by John Hussey

 

A multiverse — where our universe is only one of many — might not be as inhospitable to life as previously thought, according to new research.

Artistic impression of a Multiverse — where our Universe is only one of many. According to the research varying amounts of dark energy have little effect on star formation. This raises the prospect of life in other universes — if the Multiverse exists.

Credit: Image by Jaime Salcido/simulations by the EAGLE Collaboration

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

A Multiverse — where our Universe is only one of many — might not be as inhospitable to life as previously thought, according to new research.

Questions about whether other universes might exist as part of a larger Multiverse, and if they could harbour life, are burning issues in modern cosmology.

Now new research led by Durham University, UK, and Australia’s University of Sydney, Western Sydney University and the University of Western Australia, has shown that life could potentially be common throughout the Multiverse, if it exists.

The key to this, the researchers say, is dark energy, a mysterious “force” that is accelerating the expansion of the Universe.

Scientists say that current theories of the origin of the Universe predict much more dark energy in our Universe than is observed. Adding larger amounts would cause such a rapid expansion that it would dilute matter before any stars, planets or life could form.

The Multiverse theory, introduced in the 1980s, can explain the “luckily small” amount of dark energy in our Universe that enabled it to host life, among many universes that could not.

Using huge computer simulations of the cosmos, the new research has found that adding dark energy, up to a few hundred times the amount observed in our Universe, would actually have a modest impact upon star and planet formation.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

 

View Sample Video – Cosmology – Fabric of the Cosmos – 4 of 4 – Multiverse

This opens up the prospect that life could be possible throughout a wider range of other universes, if they exist, the researchers said.

The findings are to be published in two related papers in the journal Monthly Notices of the Royal Astronomical Society.

The simulations were produced under the EAGLE (Evolution and Assembly of GaLaxies and their Environments) project — one of the most realistic simulations of the observed Universe.

Jaime Salcido, a postgraduate student in Durham University’s Institute for Computational Cosmology, said: “For many physicists, the unexplained but seemingly special amount of dark energy in our Universe is a frustrating puzzle.

“Our simulations show that even if there was much more dark energy or even very little in the Universe then it would only have a minimal effect on star and planet formation, raising the prospect that life could exist throughout the Multiverse.”

Dr Luke Barnes, a John Templeton Research Fellow at Western Sydney University, said: “The Multiverse was previously thought to explain the observed value of dark energy as a lottery — we have a lucky ticket and live in the Universe that forms beautiful galaxies which permit life as we know it.

“Our work shows that our ticket seems a little too lucky, so to speak. It’s more special than it needs to be for life. This is a problem for the Multiverse; a puzzle remains.”

Dr Pascal Elahi, Research Fellow at the University of Western Australia, said: “We asked ourselves how much dark energy can there be before life is impossible? Our simulations showed that the accelerated expansion driven by dark energy has hardly any impact on the birth of stars, and hence places for life to arise. Even increasing dark energy many hundreds of times might not be enough to make a dead universe.”

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

The researchers said their results were unexpected and could be problematic as they cast doubt on the ability of the theory of a Multiverse to explain the observed value of dark energy.

According to the research, if we live in a Multiverse, we’d expect to observe much more dark energy than we do — perhaps 50 times more than we see in our Universe.

Although the results do not rule out the Multiverse, it seems that the tiny amount of dark energy in our Universe would be better explained by an, as yet, undiscovered law of nature.

Professor Richard Bower, in Durham University’s Institute for Computational Cosmology, said: “The formation of stars in a universe is a battle between the attraction of gravity, and the repulsion of dark energy.

“We have found in our simulations that universes with much more dark energy than ours can happily form stars. So why such a paltry amount of dark energy in our Universe?

“I think we should be looking for a new law of physics to explain this strange property of our Universe, and the Multiverse theory does little to rescue physicists’ discomfort.”

 

Story Source:

Materials provided by Durham University

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2018/05/180514083908.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Physicists propose new theories of black holes from the very early universe

Cosmos by John Hussey

 

‘Primordial black holes,’ believed to have formed shortly after the Big Bang, might explain how gold, platinum and uranium are created

A black hole captured by a neutron star.

Credit: Alexander Kusenko/UCLA

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

UCLA physicists have proposed new theories for how the universe’s first black holes might have formed and the role they might play in the production of heavy elements such as gold, platinum and uranium.

Two papers on their work were published in the journal Physical Review Letters.

A long-standing question in astrophysics is whether the universe’s very first black holes came into existence less than a second after the Big Bang or whether they formed only millions of years later during the deaths of the earliest stars.

Alexander Kusenko, a UCLA professor of physics, and Eric Cotner, a UCLA graduate student, developed a compellingly simple new theory suggesting that black holes could have formed very shortly after the Big Bang, long before stars began to shine. Astronomers have previously suggested that these so-called primordial black holes could account for all or some of the universe’s mysterious dark matter and that they might have seeded the formation of supermassive black holes that exist at the centers of galaxies. The new theory proposes that primordial black holes might help create many of the heavier elements found in nature.

The researchers began by considering that a uniform field of energy pervaded the universe shortly after the Big Bang. Scientists expect that such fields existed in the distant past. After the universe rapidly expanded, this energy field would have separated into clumps. Gravity would cause these clumps to attract one another and merge together. The UCLA researchers proposed that some small fraction of these growing clumps became dense enough to become black holes.

Their hypothesis is fairly generic, Kusenko said, and it doesn’t rely on what he called the “unlikely coincidences” that underpin other theories explaining primordial black holes.

The paper suggests that it’s possible to search for these primordial black holes using astronomical observations. One method involves measuring the very tiny changes in a star’s brightness that result from the gravitational effects of a primordial black hole passing between Earth and that star. Earlier this year, U.S. and Japanese astronomers published a paper on their discovery of one star in a nearby galaxy that brightened and dimmed precisely as if a primordial black hole was passing in front of it.

In a separate study, Kusenko, Volodymyr Takhistov, a UCLA postdoctoral researcher, and George Fuller, a professor at UC San Diego, proposed that primordial black holes might play an important role in the formation of heavy elements such as gold, silver, platinum and uranium, which could be ongoing in our galaxy and others.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

 

View Sample Video – Cosmology – Black Holes – Birth of a Black Hole

The origin of those heavy elements has long been a mystery to researchers.

“Scientists know that these heavy elements exist, but they’re not sure where these elements are being formed,” Kusenko said. “This has been really embarrassing.”

The UCLA research suggests that a primordial black hole occasionally collides with a neutron star — the city-sized, spinning remnant of a star that remains after some supernova explosions — and sinks into its depths.

When that happens, Kusenko said, the primordial black hole consumes the neutron star from the inside, a process that takes about 10,000 years. As the neutron star shrinks, it spins even faster, eventually causing small fragments to detach and fly off. Those fragments of neutron-rich material may be the sites in which neutrons fuse into heavier and heavier elements, Kusenko said.

However, the probability of a neutron star capturing a black hole is rather low, said Kusenko, which is consistent with observations of only some galaxies being enriched in heavy elements. The theory that primordial black holes collide with neutron stars to create heavy elements also explains the observed lack of neutron stars in the center of the Milky Way galaxy, a long-standing mystery in astrophysics.

This winter, Kusenko and his colleagues will collaborate with scientists at Princeton University on computer simulations of the heavy elements produced by a neutron star-black hole interaction. By comparing the results of those simulations with observations of heavy elements in nearby galaxies, the researchers hope to determine whether primordial black holes are indeed responsible for Earth’s gold, platinum and uranium.

 

Story Source:

Materials provided by University of California – Los Angeles. Original written by Katherine Kornei.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2017/09/170901135518.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here