The origins of the universe

Cosmos by John Hussey


An in-depth look at the origins of matter and the environmental conditions that helped shape the universe today.

The nuclear phase diagram: RHIC sits in the energy “sweet spot” for exploring the transition between ordinary matter made of hadrons and the early universe matter known as quark-gluon plasma.

Credit: Image courtesy of Brookhaven National Laboratory

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

A long time ago in a galaxy far, far away…

Actually, there is no reason either to go to your local theatre or to leave this galaxy for another one far away if you want to know what happened a long time ago in our universe. You can travel back in time and space to the microseconds following the Big Bang, with the answers found by DOE nuclear physicists working at our National Laboratories and universities.

 

The Big Bang

Everything we know in the universe — planets, people, stars, galaxies, gravity, matter and antimatter, energy and dark energy — all date from the cataclysmic Big Bang. While it was over in fractions of a second, a region of space the size of a single proton vastly expanded to form the beginnings of our universe.

Understanding what happened in the first few microseconds is crucial to knowing how the universe came to look and behave as it does today. And our understanding is increasingly shaped by re-creating the very events that constituted the Big Bang and by studying the primordial soup of fundamental particles of the very early universe. One of the best science tools for this is the Relativistic Heavy Ion Collider (RHIC), a DOE Office of Science User Facility at Brookhaven National Laboratory. At RHIC, over a thousand scientists from all over the world come to study the behaviors of matter as it is thought to have acted microseconds after the Big Bang.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Universe – Mapping the Universe

RHIC is a particle collider, and the first such machine capable of mashing together heavy ions, which are atoms that have had their outer cloud of electrons removed. Think of RHIC as a 2.4-mile-long “jousting arena,” where ion beams start at opposite ends and travel toward one another at nearly the speed of light. But rather than a knight getting “un-horsed,” this high-speed collision melts the protons and neutrons of the ions, freeing the quarks and other particles to disperse in an explosion very like that of the Big Bang.

As the first matter began to emerge from the Big Bang, it went through a number of phases much as steam condenses to water and eventually freezes as it cools — except rather than water, you get the first recognizable matter in the universe — a hot soup of quarks and gluons. Though the whole process occurred within fractions of a second, there were still phases of matter within that process that scientists don’t understand. RHIC was initially the only machine in the world capable of re-creating the environmental conditions and temperature adjustments in which matter can rapidly change forms, just like in the microseconds following the Big Bang.

Inside RHIC, ordinary matter tends to melt into its fundamental constituents, with temperatures more than 100,000 times hotter than the center of the sun. This reaction allows scientists to understand the nature of matter and how we all came to be.

“RHIC researchers are able to see the forms of matter that come from the quarks and gluons behaving in a variety of conditions,” said Paul Sorensen, a physicist at RHIC. “For example, think of the heavy ion as an onion, but after reacting in these conditions, the onion becomes a bowl of French onion soup.”

In addition to RHIC, the Office of Science supports research on the environmental conditions of the Big Bang at the Large Hadron Collider (LHC), located at CERN, the European Organization for Nuclear Research, in Switzerland. LHC permits study of these phenomena under somewhat different temperature conditions from those at RHIC, bringing this matter back to its primordial constituencies. Basically, LHC can turn French onion soup from hot to scalding. By using colliders, scientists are able to break apart particles of matter that were once confined together. This explosive reaction, which separates matter into its primordial elements, is the best way for us to understand the properties of matter.

The findings at RHIC and LHC have taught us a lot about what we are made of and where we came from (and how the universe makes French onion soup!). And though we now know more about the particles of matter that make up our universe, as well as the many different types of matter created by our universe, I look forward to learning “what matters” next.

 

Story Source:

Materials provided by Department of Energy, Office of Science.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/03/160301175455.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Reaching out to stars beyond our galaxy

Cosmos by John Hussey


An international team of researchers in Japan is getting ready to power up a 50,000-ton neutrino detector by adding a single metal, which will turn it into the world’s first detector capable of analysing exploding stars beyond the immediate neighbourhood of the Milky Way.

Scientists stand on a platform at the world’s largest underground neutrino detector Super Kamiokande located 1km underneath the mountain in central Japan.

Credit: Copyright : Kavli Institute for the Physics and Mathematics of the Universe

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

An international team of researchers in Japan is getting ready to power up a 50,000-ton neutrino detector by adding a single metal, which will turn it into the world’s first detector capable of analysing exploding stars beyond the immediate neighbourhood of the Milky Way.

Neutrinos are relics from supernovae, or exploding stars. They are so tiny and interact so weakly that every second, trillions of them manage to pass through human bodies without anyone noticing. Studying them can reveal details about how stars in the universe, like our sun, work.

The problem is that all supernova neutrinos that have been detected to-date have come from the immediate vicinity of our galaxy. No one knows whether neutrinos from older galaxies far outside ours act the same way as neutrinos close to Earth, or whether there is a completely new class of tiny particles yet to be discovered.

Experimental physicist Mark Vagins of the Kavli Institute for the Physics and Mathematics of the Universe and Ohio State University theorist John Beacom wanted to see if it were possible to improve Japan’s largest neutrino detector, Super-Kamiokande. One of their ideas was to add the rare-earth metal gadolinium to the detector’s water tank, taking advantage of the gadolinium nuclei’s ability to capture neutrons. If a neutron released from a neutrino interaction were nearby, it would be absorbed by the gadolinium, which would release the extra energy by creating a flash of light: a signal that could be detected by the equipment. But before any tests could be run, the two researchers needed to find out if their idea made scientific sense and predict what complications they might need to overcome.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Quantum Mechanics – Neutrinos

First, water inside the detector would need to be transparent. Neutrinos interact with water, creating tiny flashes of light that are picked up by the photomultiplier tubes lining the walls of the tank. If gadolinium made the water murky, it would prevent the phototubes from detecting any light.

Second, the gadolinium needed to be uniformly spread within the tank so it could be close enough to a neutrino-water interaction to magnify its signal.

“These two criteria, uniformity and transparency, mean the gadolinium must be induced to dissolve,” says Dr Vagins. “We’ve spent over ten years figuring out how to do it.”

In July 2015, Dr Vagins announced at an international conference in Tokyo that he had developed the necessary technology and will now start plans to enrich Super-Kamiokande with gadolinium.

Gadolinium is a by-product of the extraction of other rare earth metals, some of which are used to produce the colours in flat-screen TVs. This makes gadolinium affordable so that Dr Vagins and his team will be able to purchase the 100 tons needed to help Super-Kamiokande detect neutrinos from distant supernovae.

 

Story Source:

Materials provided by Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU).

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/03/160308091644.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

When the radio squeaks, an extraterrestrial particle enters the earthly atmosphere (and tells us where it comes from)

Cosmos by John Hussey


LOFAR, the big international radio telescope, can now be used as a particle detector. Astronomers made a new model to determine the type and cosmic source of incoming cosmic particles.

Radio signal of a particle shower reaching the core of the LOFAR-telescope in Dwingelo, the Netherlands. Astronomers made a model to use LOFAR as a particle detector.

Credit: Heino Falcke, Radboud Universiteit

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

LOFAR, the big international radio telescope, can now be used as a particle detector. Astronomers made a new model to determine the type and cosmic source of incoming cocmic particles.

LOFAR normally receives weak radio waves from the early universe. But now and then an ultra short, bright radio pulse is observed. Your car radio translates this into a little noise — the last signal of an elemental particle entering the atmosphere. Astronomers have now unravelled the radio code of these intruders to determine their type and their cosmic source.

Super nova’s, dying stars, black holes. All these have been named as sources of cosmic particles. But until now nobody really knew. Cosmic particles are elementary particles that travel through the universe with an energy that is a million times bigger than the largest particle accelerator on earth. With almost the speed of light, they collide like bullets with the atmosphere, before falling apart into a cascade of other, even smaller particles. Their interaction with Earth’s magnetic field leads to a short radio signal, no longer than one billionth of a second. The thousands of LOFAR antennas, placed over a large area that stretches from Ireland to Sweden, Poland, Switzerland and France, help to find the signal and measure it accurately.

 

Smoking gun

Finding the signal is one thing, knowing what caused it is another. For the first time the astronomers succeeded in calculating and modelling what kind of particle came in. “We can now identify the bullet,” Heino Falcke says. Falcke is a professor in Radio Astronomy at Radboud University in the Netherlands and chair of the LOFAR scientific board, who pioneered this new technique. “In most cases the bullet turns out to be a single proton or the light nucleus of a helium atom.” This suggests that the source of these particles lies in our Milky Way, which conflicts with the most common theories on the matter.

“Because of the enormous energy, most astrophysicists assume that cosmic particles originate deep in the universe, like black holes in other galaxies,” Stijn Buitink says. Professor Buitink from the Vrije Universiteit Brussel is first author of the Nature paper. “But we think they come from a nearby source and get their energy from a cosmic accelerator in the Milky Way — perhaps a very big star…”

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Telescopes – Discovering Deep Space

Cosmic accelerators

The sources of cosmic particles are cosmic accelerators, a million times stronger than the Large Hadron Collider (LHC) in Geneva or any conceivable human-made accelerator for that matter. “These particles come to earth anyway, so we only have to find them, ” Falcke says. The new model enabling the astronomers to identify the incoming particles, opens up a new window to the high-energy universe and high-precision measurement of cosmic particles. “We can now do high energy physics with simple FM radio antennas.” Professor Olaf Scholten, Astro Particle Physicist from the University of Groningen, explained that the result is based on very detailed knowledge of all the processes leading to radio emission in the particle cascade that is started by the incoming particle colliding with the atmosphere.

 

Pierre Auger

The astronomers are busy bringing the technique to new places, to start with the Pierre Auger Observatory in Argentina there as part of an international collaboration. Jörg Hörandel, leader of the Astro Particle Physics group at Radboud University is placing hundreds of radio antennas on the pampas and implementing the LOFAR technique. “Pierre Auger is the biggest experiment on cosmic particles in the world,” says Hörandel. “This new method makes it possible to study cosmic particles with an even higher energy and an unprecedented accuracy.”

 

Story Source:

Materials provided by Radboud University.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/03/160302132611.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Explosive start not needed for fast radio bursts

Cosmos by John Hussey


After combing through archived data, astronomers have discovered the pop-pop-pop of a mysterious, cosmic Gatling gun — 10 millisecond-long “fast radio bursts” — recently caught by the Arecibo telescope in Puerto Rico.

The Arecibo telescope in Arecibo, Puerto Rico, which found repeating fast radio bursts, after astronomers reviewed PALFA (Pulsar Arecibo L-Band Feed Array) survey data.

Credit: Robert Barker/University Photography

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

After combing through Cornell-archived data, astronomers have discovered the pop-pop-pop of a mysterious, cosmic Gatling gun — 10 millisecond-long “fast radio bursts” — caught by the Arecibo telescope in Puerto Rico, as reported in Nature, March 2.

In the past eight years, scientists have found 17 fast radio bursts, or FRBs. Until now, scientists believed these bursts were isolated, singular events — one-time explosions from the distant corners of the universe. To their surprise, after reviewing PALFA (Pulsar Arecibo L-Band Feed Array) data from 2015, astronomers now confirm that at least some of these FRB sources emit repeated pulses.

Last week, astronomers in another Nature paper indicated the discovery of the 17th FRB, reporting a radio “afterglow” of a new FRB, which is like a mushroom cloud following a huge explosion, says Shami Chatterjee, a Cornell senior researcher. “In our paper, we’re showing that our FRB can’t have an explosive origin. So, either there’s an odd coincidence, or maybe there are different types of FRBs. Either way, it seems we’ve broken this enigmatic phenomenon wide open.”

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Universe – Mapping the Universe

Chatterjee, who measured the burst properties and searched for counterparts at other wavelengths, says this discovery rules out entire classes of theoretical models — such as explosive mergers of neutron stars — for at least this one FRB source. “This research shows for the first time that there can be multiple FRBs from the same place in the sky — with the same pulse dispersion or distance. Whatever produces the FRB can’t be destroyed by the burst, because otherwise, what would produce the next pulse?” This new cosmic riddle is perplexing, said Cornell University astronomy professor James Cordes. “We’re showing that whatever battery drives FRBs, it can recharge in minutes,” he said.

“The energy of the event becomes very problematic. We’re detecting these FRBs from very far away, which means that they are intrinsically very bright. Only a few astrophysical sources can produce bursts like this, and we think they are most likely neutron stars in other galaxies,” Cordes said, based on his own theoretical analysis conducted with his colleague Ira Wasserman, Cornell professor of astronomy.

 

Story Source:

Materials provided by Cornell University. Original written by Blaine Friedlander.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/03/160302132713.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Mysterious cosmic radio bursts found to repeat

Cosmos by John Hussey


Astronomers for the first time detect repeat ‘fast radio bursts’ from same sky location

Astronomers for the first time have detected repeating short bursts of radio waves from an enigmatic source that is likely located well beyond the edge of our Milky Way galaxy. The findings indicate that these ‘fast radio bursts’ come from an extremely powerful object which occasionally produces multiple bursts in under a minute. Prior to this discovery all previously detected fast radio bursts have appeared to be one-off events.

The 305-m Arecibo telescope and its suspended support platform of radio receivers is shown amid a starry night. From space, a sequence of millisecond-duration radio flashes are racing towards the dish, where they will be reflected and detected by the radio receivers. Such radio signals are called fast radio bursts, and Arecibo is the first telescope to see repeat bursts from the same source.

Credit: Danielle Futselaar

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Astronomers for the first time have detected repeating short bursts of radio waves from an enigmatic source that is likely located well beyond the edge of our Milky Way galaxy. The findings indicate that these “fast radio bursts” come from an extremely powerful object which occasionally produces multiple bursts in under a minute.

Prior to this discovery, reported in Nature, all previously detected fast radio bursts (FRBs) have appeared to be one-off events. Because of that, most theories about the origin of these mysterious pulses have involved cataclysmic incidents that destroy their source — a star exploding in a supernova, for example, or a neutron star collapsing into a black hole. The new finding, however, shows that at least some FRBs have other origins.

FRBs, which last just a few thousandths of a second, have puzzled scientists since they were first reported nearly a decade ago. Despite extensive follow-up efforts, astronomers until now have searched in vain for repeat bursts.

That changed last November 5th, when McGill University PhD student Paul Scholz was sifting through results from observations performed with the Arecibo radio telescope in Puerto Rico — the world’s largest radio telescope. The new data, gathered in May and June and run through a supercomputer at the McGill High Performance Computing Centre, showed several bursts with properties consistent with those of an FRB detected in 2012.

The repeat signals were surprising — and “very exciting,” Scholz says. “I knew immediately that the discovery would be extremely important in the study of FRBs.” As his office mates gathered around his computer screen, Scholz pored over the remaining output from specialized software used to search for pulsars and radio bursts. He found that there were a total of 10 new bursts.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Universe – Mapping the Universe

The finding suggests that these bursts must have come from a very exotic object, such as a rotating neutron star having unprecedented power that enables the emission of extremely bright pulses, the researchers say. It is also possible that the finding represents the first discovery of a sub-class of the cosmic fast-radio-burst population.

“Not only did these bursts repeat, but their brightness and spectra also differ from those of other FRBs,” notes Laura Spitler, first author of the new paper and a postdoctoral researcher at the Max Planck Institute for Radio Astronomy in Bonn, Germany.

Scientists believe that these and other radio bursts originate from distant galaxies, based on the measurement of an effect known as plasma dispersion. Pulses that travel through the cosmos are distinguished from human-made interference by the influence of interstellar electrons, which cause radio waves to travel more slowly at lower radio frequencies. The 10 newly discovered bursts, like the one detected in 2012, have three times the maximum dispersion measure that would be expected from a source within the Milky Way.

Intriguingly, the most likely implication of the new Arecibo finding — that the repeating FRB originates from a very young extragalactic neutron star — is at odds with the results of a study published last week in Nature by another research team. That paper suggested FRBs are related to cataclysmic events, such as short gamma-ray bursts, which can not generate repeat events. “However, the apparent conflict between the studies could be resolved, if it turns out that there are at least two kinds of FRB sources,” notes McGill physics professor Victoria Kaspi, a senior member of the international team that conducted the Arecibo study.

In future research, the team hopes to identify the galaxy where the radio bursts originated. To do so, they will need to detect bursts using radio telescopes with far more resolving power than Arecibo, a National Science Foundation-sponsored facility with a dish that spans 305 metres and covers about 20 acres. Using a technique called interferometry, performed with radio telescope arrays spread over large geographical distances, the astronomers may be able to achieve the needed resolution.

“Once we have precisely localized the repeater’s position on the sky, we will be able to compare observations from optical and X-ray telescopes and see if there is a galaxy there,” says Jason Hessels, associate professor at the University of Amsterdam and the Netherlands Institute for Radio Astronomy as well as corresponding author of the Nature paper. “Finding the host galaxy of this source is critical to understanding its properties,” he adds.

Canada’s CHIME telescope could help unravel the puzzle, adds Kaspi, who is Director of the McGill Space Institute. Thanks to the novel design of the soon-to-be completed apparatus, it is expected to be able to detect dozens of fast radio bursts per day, she says. “CHIME will further our quest to understand the origin of this mysterious phenomenon, which has the potential to provide a valuable new probe of the Universe.”

 

Story Source:

Materials provided by McGill University.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/03/160302135202.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Hubble breaks cosmic distance record: Sees universe soon after Big Bang

Cosmos by John Hussey


By pushing the NASA/ESA Hubble Space Telescope to its limits astronomers have shattered the cosmic distance record by measuring the distance to the most remote galaxy ever seen in the Universe. This galaxy existed just 400 million years after the Big Bang and provides new insights into the first generation of galaxies.

This image shows the position of the most distant galaxy discovered so far within a deep sky Hubble Space Telescope survey called GOODS North (Great Observatories Origins Deep Survey North). The survey field contains tens of thousands of galaxies stretching far back into time. The remote galaxy GN-z11, shown in the inset, existed only 400 million years after the Big Bang, when the Universe was only 3 percent of its current age. It belongs to the first generation of galaxies in the Universe and its discovery provides new insights into the very early Universe. This is the first time that the distance of an object so far away has been measured from its spectrum, which makes the measurement extremely reliable. GN-z11 is actually ablaze with bright, young, blue stars but these look red in this image because its light was stretched to longer, redder, wavelengths by the expansion of the Universe.

Credit: NASA, ESA, and P. Oesch (Yale University)

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

By pushing the NASA/ESA Hubble Space Telescope to its limits astronomers have shattered the cosmic distance record by measuring the distance to the most remote galaxy ever seen in the Universe. This galaxy existed just 400 million years after the Big Bang and provides new insights into the first generation of galaxies. This is the first time that the distance of an object so far away has been measured from its spectrum, which makes the measurement extremely reliable. The results will be published in the Astrophysical Journal.

Using the NASA/ESA Hubble Space Telescope an international team of astronomers has measured the distance to this new galaxy, named GN-z11. Although extremely faint, the galaxy is unusually bright considering its distance from Earth. The distance measurement of GN-z11 provides additional strong evidence that other unusually bright galaxies found in earlier Hubble images are really at extraordinary distances, showing that we are closing in on the first galaxies that formed in the Universe.

Previously, astronomers had estimated GN-z11’s distance by analysing its colour in images taken with both Hubble and the NASA Spitzer Space Telescope. Now, for the first time for a galaxy at such an extreme distance, the team has used Hubble’s Wide Field Camera 3(WFC3) to precisely measure the distance to GN-z11 spectroscopically by splitting the light into its component colours.

“Our spectroscopic observations reveal the galaxy to be even further away than we had originally thought, right at the distance limit of what Hubble can observe,” explains Gabriel Brammer of the Space Telescope Science Institute and second author of the study.

This puts GN-z11 at a distance that was once thought only to be reachable with the upcoming NASA/ESA/CSA James Webb Space Telescope (JWST) [1].

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Telescopes – Hubble – 15 Years of Discovery

“We’ve taken a major step back in time, beyond what we’d ever expected to be able to do with Hubble. We managed to look back in time to measure the distance to a galaxy when the Universe was only three percent of its current age,” says Pascal Oesch of Yale University and lead author of the paper.

To determine large distances, like the one to GN-z11, astronomers measure the redshift of the observed object. This phenomenon is a result of the expansion of the Universe; every distant object in the Universe appears to be receding from us and as a result its light is stretched to longer, redder wavelengths.

Before astronomers determined the distance to GN-z11, the most distant measured galaxy, EGSY8p7, had a redshift of 8.68. Now, the team has confirmed GN-z11’s distance to be at a redshift of 11.1, which corresponds to 400 million years after the Big Bang.

“The previous record-holder was seen in the middle of the epoch when starlight from primordial galaxies was beginning to heat and lift a fog of cold, hydrogen gas,” explains co-author Rychard Bouwens from the University of Leiden, the Netherlands. “This transitional period is known as the reionisation era. GN-z11 is observed 150 million years earlier, near the very beginning of this transition in the evolution of the Universe.”

The combination of observations taken by Hubble and Spitzer revealed that the infant galaxy is 25 times smaller than the Milky Way and has just one percent of our galaxy’s mass in stars. However, the number of stars in the newborn GN-z11 is growing fast: The galaxy is forming stars at a rate about 20 times greater than the Milky Way does today [2]. This high star formation rate makes the remote galaxy bright enough for Hubble to see and to perform detailed observations.

However, the discovery also raises many new questions as the existence of such a bright and large galaxy is not predicted by theory. “It’s amazing that a galaxy so massive existed only 200 million to 300 million years after the very first stars started to form. It takes really fast growth, producing stars at a huge rate, to have formed a galaxy that is a billion solar masses so soon,” explains Garth Illingworth of the University of California, Santa Cruz.

Marijn Franx, a member of the team from the University of Leiden highlights: “The discovery of GN-z11 was a great surprise to us, as our earlier work had suggested that such bright galaxies should not exist so early in the Universe.” His colleague Ivo Labbe adds: “The discovery of GN-z11 showed us that our knowledge about the early Universe is still very restricted. How GN-z11 was created remains somewhat of a mystery for now. Probably we are seeing the first generations of stars forming around black holes?”

These findings provide a tantalising preview of the observations that the James Webb Space Telescope will perform. “This new discovery shows that JWST will surely find many such young galaxies reaching back to when the first galaxies were forming,” concludes Illingworth.

 

Notes

[1] The NASA/ESA/CSA James Webb Space Telescope is a collaboration between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA). It is scheduled for launch in 2018.

[2] GN-z11 transforms about 24 solar masses of gas and dust per year into new stars.

 

Story Source:

Materials provided by ESA/Hubble Information Centre

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/03/160303133510.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

The expansion of the Universe simulated

Cosmos by John Hussey


Astronomers use computer simulations based on theoretical models to explain massive star formation observed in dwarf galaxies

The rotation of space-time and gravitational waves simulated for the first time in simulations of the formation of large-scale structures of the Universe

The gravitational waves generated during the formation of structures in the universe are shown. The structures (distribution of masses) are shown as bright dots, gravitational waves by ellipses. The size of the ellipse is proportional to the amplitude of the wave and its orientation represents its polarization.

Credit: Copyright Ruth Durrer, UNIGE

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

The Universe is constantly expanding. It changes, creating new structures that merge. But how does our Universe evolve? Physicists at the University of Geneva (UNIGE), Switzerland, have developed a new code of numerical simulations that offers a glimpse of the complex process of the formation of structures in the Universe. Based on Einstein’s equations, they were able to integrate the rotation of space-time into their calculations and calculate the amplitude of gravitational waves, whose existence was confirmed for the first time on February 12, 2016. This study is published in the journal Nature Physics.

Until now, scientists studied the formation of large-scale cosmological structures based numerical simulations of Newtonian gravitation. These codes postulate that space itself does not change, it is said to be static, while time goes on. The simulations that it allows are very precise if the matter in the Universe moves slowly (i.e., about 300 km per second). However, when the matter particles move at high speed, this code only allows approximate calculations. Furthermore, it does not describe the fluctuations of dark energy. Constituting 70% of the total energy of the Universe (the remaining 30% is made of dark matter and ordinary matter), it is responsible for the accelerated expansion of the Universe. Therefore, it was necessary to find a new way to simulate the formation of cosmological structures and allow the study of these two phenomena.

 

The theory of general relativity applied

Ruth Durrer’s team from the Department of Theoretical Physics in the Faculty of Science at UNIGE, has thus created a code, named gevolution, based on Einstein’s Theory of general relativity. Indeed, general relativity considers space-time as being dynamical, that is to say that space and time are constantly changing, unlike the static space of Newtonian theory. The goal was to predict the amplitude and the impact of gravitational waves and frame-dragging (the rotation of space-time) induced by the formation of cosmological structures.

To do so, the physicists from UNIGE analysed a cubic portion in space, consisting of 60 billion zones with each containing a particle (that is to say, a portion of a galaxy), in order to study the way they move with respect to their neighbors. Thanks to the LATfield2 library (developed by David Daverio from UNIGE), which solves nonlinear partial differential equations, and the Supercomputer from the Swiss Supercomputer Center in Lugano, the researchers were able to study the motion of particles and calculate the metric (the measure of distances and time between two galaxies in the Universe) using Einstein’s equations. The resulting spectra of these calculations allow to quantify the difference between the results obtained by gevolution and those coming from Newtonian codes. This allows to measure the effect of frame-dragging and gravitational waves introduced by the formation of structure in the Universe.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Galaxy – Formation – The Milky Way – Zurich University

Gravitational waves and frame-dragging predicted by gevolution

Indeed, frame-dragging and gravitational waves have never been included in simulations until the creation of the gevolution code. This opens the way for the comparison of simulation results of the evolution of the Universe with observations. With their new code, the physicists at UNIGE will be able to test the theory of general relativity on much larger scales than at present. In order to open research to a maximum in this field, Professor Ruth Durrer and her team will make their gevolution code public. Perhaps soon light will be shed on the mysteries of dark energy.

 

Story Source:

Materials provided by Université de Genève.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/03/160307112935.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Dark matter satellites trigger massive birth of stars

Cosmos by John Hussey


Astronomers use computer simulations based on theoretical models to explain massive star formation observed in dwarf galaxies

Astronomers are presenting a novel analysis of computer simulations, based on theoretical models, that study the interaction of a dwarf galaxy with a dark satellite.

This is a dwarf galaxy with a starburst.

Credit: UC Riverside

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

One of the main predictions of the current model of the creation of structures in the universe, known at the Lambda Cold Dark Mattermodel, is that galaxies are embedded in very extended and massive halos of dark matter that are surrounded by many thousands of smaller sub-halos also made from dark matter.

Around large galaxies, such as the Milky Way, these dark matter sub-halos are large enough to host enough gas and dust to form small galaxies on their own, and some of these galactic companions, known as satellite galaxies, can be observed. These satellite galaxies can orbit for billions of years around their host before a potential merger. Mergers cause the central galaxy to add large amount of gas and stars, triggering violent episodes of new star formation ?known as starbursts? due to the excess gas brought in by the companion. The host’s shape or morphology can also be disturbed due to the gravitational interaction.

Smaller halos form dwarf galaxies, which at the same time will be orbited by even smaller satellite sub-halos of dark matter which are now far too tiny to have gas or stars in them. These dark satellites therefore are invisible to telescopes, but readily appear in theoretical models run in computer simulations. A direct observation of their interaction with their host galaxies is required to prove their existence.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Universe – Dark Matter and Dark Energy

Laura Sales, an assistant professor at the University of California, Riverside’s Department of Physics and Astronomy, collaborated with Tjitske Starkenburg and Amina Helmi, both of the Kapteyn Astronomical Institute in The Netherlands, to present a novel analysis of computer simulations, based on theoretical models, that study the interaction of a dwarf galaxy with a dark satellite.

The findings were outlined in a just-published paper, “Dark influences II: gas and star formation in minor mergers of dwarf galaxies with dark satellites,” in the journal Astronomy & Astrophysics.

The researchers found that during a dark satellite’s closest approach to a dwarf galaxy, through gravity it compresses the gas in the dwarf, triggering significant episodes of starbursts. These star forming episodes may last for several billions of years, depending on the mass, orbit and concentration of the dark satellite.

This scenario predicts that many of the dwarf galaxies that we readily observe today should be forming stars at a higher rate than expected –or should be experiencing a starburst– which is exactly what telescope observations have found.

Furthermore, similarly to mergers between more massive galaxies, the interaction between the dwarf galaxy and the dark satellite triggers morphological disturbances in the dwarf, which can completely change its structure from mainly disk-shaped to a spherical/elliptical system. This mechanism also offers an explanation to the origin of isolated spheroidal dwarf galaxies, a puzzle that has remained unsolved for several decades.

 

Story Source:

Materials provided by University of California – Riverside. Original written by Mario De Leo Winkler.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/03/160309140048.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Deciphering compact galaxies in the young universe

Cosmos by John Hussey


Researchers have discovered about 80 young galaxies in the early universe about 1.2 billion years after the Big Bang. They made detailed analyses of imaging data by the Hubble Space Telescope. Among them, 8 galaxies show double-component structures and the remaining 46 seem to have elongated structures. These results strongly suggest that galactic clumps in the young universe grow to become large galaxies through mergers.

Red data points are the observed data; most of them have elongated shapes and larger galaxies tend to have larger ellipticities. Gray-colored regions represent the probability distributions calculated with the computer simulations, in which two galaxies are located at so close distance that they are blended as an elongated galaxy, as shown in the right pictures schematically.

Credit: Ehime University

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

A group of researchers using the Suprime-Cam instrument on the Subaru Telescope has discovered about 80 young galaxies that existed in the early universe about 1.2 billion years after the Big Bang. The team, with members from Ehime University, Nagoya University, Tohoku University, Space Telescope Science Institute (STScI) in the U.S., and California Institute of Technology, then made detailed analyses of imaging data of these galaxies taken by the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. At least 54 of the galaxies are spatially resolved in the ACS images. Among them, 8 galaxies show double-component structures and the remaining 46 seem to have elongated structures. Through a further investigations using a computer simulation, the group found that the observed elongated structures can be reproduced if two or more galaxies reside in close proximity to each other.

These results strongly suggest that 1.2 billion years after the Big Bang, galactic clumps in the young universe grow to become large galaxies through mergers, which then causes active star formation to take place. This research was conducted as part of the treasury program of Hubble Space Telescope (HST), “Cosmic Evolution Survey (COSMOS).” The powerful survey capability of the Subaru Telescope provided the essential database of the candidate objects in the early universe for this research project.

 

The Importance of Studying Early Galaxies

In the present universe, at a point 13.8 billion years after the Big Bang, there are many giant galaxies like our Milky Way, which contains about 200 billion stars in a disk a hundred thousand light years across. However, there were definitely no galaxies like it in the epoch just after the Big Bang.

Pre-galactic clumps appear to have formed in the universe about 200 million years after the Big Bang. These were cold gas clouds much smaller than the present giant galaxies by a factor of 100, with masses smaller by a factor of a million. The first galaxies were formed when the first stars were born in these gas clumps. These small galactic clumps then experienced continuous mergers with surrounding clumps and eventually grew into large galaxies.

Much effort has been made through deep surveys to detect actively star-forming galaxies in the young universe. As a result, the distances of the earliest galaxies are now known to be at more than 13 billion light-years. We see them at a time when the age of the universe was only 800 million years (or about 6% of the present age). However, since most of the galaxies in the young universe were quite small, their detailed structures have not yet been observed.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Telescopes – Hubble – 15 Years of Discovery

Exploring the Young Universe Using Subaru Telescope and Hubble Space Telescope

While the wide field of view of the Subaru Telescope has played an important role in finding such young galaxies, the high spatial resolution of the Hubble Space Telescope (HST) is required to investigate the details of their shapes and internal structures. The research team looked back to a point 12.6 billion years ago using a two-pronged approach. The first step was to use the Subaru Telescope in a deep survey to search out the early galaxies, and then follow that up to investigate their shapes using the Advanced Camera for Surveys (ACS) on board the HST. The ACS revealed 8 out of 54 galaxies to have double-component structures, where two galaxies seem to be merging with each other (Note 1).

Then, a question arose as to whether the remaining 46 galaxies are really single galaxies. Here, the research team questioned why many of these galaxies show elongated shapes in the HST/ACS images. This is because such elongated shapes, together with the positive correlation between ellipticity (Note 2) and size, strongly suggest a possibility that two small galaxies reside so close to each other that they cannot be resolved into two distinct galaxies, even using ACS.

To examine whether the idea of closely crowded galaxies is viable, the researchers conducted so-called Monte Carlo computer simulations. First, the group put two identical artificial sources at random locations with various angular separations onto the real observed ACS image. Then, the group tried to extract the images with the same method used for the actual observed ACS image and measured their ellipticities and sizes.

The simulated distribution reproduces the observed results very well. That is, most of the galaxies that were observed as single sources in the HST/ACS images are actually two merging galaxies. However, the distances between two merging galaxies are so small they cannot be spatially resolved, even by HST’s high resolution!

If this idea is valid for the galaxies that appear to be single, then it’s possible to assume that the galaxies with the highest rate of activities have the smallest sizes. This is expected because the smallest sizes imply the smallest separation between two merging galaxies. If this is the case, such galaxies would experience intense star formation activity triggered by their mergers.

On the other hand, some galaxies with the smallest sizes are moderately separated pairs, but are observed along the line of sight, or are just single, isolated star-forming galaxies. These are basically the same as large-size galaxies.

The research team has confirmed that the observed relation between star formation activity and size is consistently explained by the team’s idea.

To date, the shapes and structures of small young galaxies have been investigated by using ACS on HST. If a source was detected as a single ACS source, it was treated as a single galaxy and its morphological parameters were evaluated. This research suggests that such a small galaxy can consist of two (or perhaps, more) interacting/merging galaxies located so close together that they cannot be resolved by even the high angular resolution of the ACS.

 

Looking into the Future of Studying the Past

Current galaxy formation theories predict that small galaxies in the young universe evolve into large galaxies via successive mergers. The question remains: what is the next step in observational studies for galaxy formation in the young universe? This is one of the frontier fields that requires future “super telescopes,” e.g. Thirty Meter Telescope (TMT) and the James Webb Space Telescope (JWST). They will enable the next breakthroughs in the study of early galaxy formation and evolution.

 

Note:

  1. A mean size (that is, a mean diameter of the circle which encloses half of the total light of galaxy) of individual small galaxies is about 5.5 thousand light-years (kly). A mean distance between the two small galaxies, which is projected distance on the sky, is 13 kly (13,000 light-years).
  2. Ellipticity is defined as 1 — b/a, where a and b represent the major and minor radii of an ellipse. In the case of a circle, ellipticity is equal to zero because a equals to b. A more elongated shape results in a larger ellipticity.

 

Story Source:

Materials provided by National Institutes of Natural Sciences.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/03/160310111558.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

Mysterious infrared light from space resolved perfectly

Cosmos by John Hussey


Astronomers have detected the faintest millimeter-wave source ever observed. By accumulating millimeter-waves from faint objects throughout the Universe, the team finally determined that such objects are 100 percent responsible for the enigmatic infrared background light filling the Universe. By examining optical and infrared images, the team found that 60 percent of them are faint galaxies, whereas the rest have no corresponding objects and their nature is still unknown.

60 percent of them have corresponding optical/infrared galaxies, whereas the remaining 40 percent are invisible in other wavelength.

Credit: ALMA (ESO/NAOJ/NRAO), NAOJ, Fujimoto et al.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

A research team using the Atacama Large Millimeter/submillimeter Array (ALMA) has detected the faintest millimeter-wave source ever observed. By accumulating millimeter-waves from faint objects like this throughout the Universe, the team finally determined that such objects are 100% responsible for the enigmatic infrared background light filling the Universe. By comparing these to optical and infrared images, the team found that 60% of them are faint galaxies, whereas the rest have no corresponding objects in optical/infrared wavelengths and their nature is still unknown.

The Universe looks dark in the parts between stars and galaxies. However, astronomers have found that there is faint but uniform light, called the “cosmic background emission,” coming from all directions. This background emission consists of three main components; Cosmic Optical Background (COB), Cosmic Microwave Background (CMB), and Cosmic Infrared Background (CIB).

The origins of the first two have already been revealed. The COB comes from a huge number of stars, and the CMB comes from hot gas just after the Big Bang. However, the origin of the CIB was still to be solved. Various research projects, including past ALMA observations, have been conducted, but they could only explain half of the CIB.

A research team led by a graduate student, Seiji Fujimoto, and an associate professor, Masami Ouchi, at the University of Tokyo, tackled this mysterious infrared background by examining the ALMA data archive. ALMA is the perfect tool to investigate the source of the CIB thanks to its unprecedented sensitivity and resolution.

They went through the vast amount of ALMA data taken during about 900 days in total looking for faint objects. They also searched the datasets extensively for lensed sources, where huge gravity has magnified the source making even fainter objects visible.

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here

View Sample Video – Cosmology – Universe – Beyond the Big Bang

Related Video Content

Cosmology – Universe – Beyond the Big Bang.mp4
Cosmology – Universe – Birth and Death of Stars.webm
Cosmology – Universe – Cosmic Calendar.mp4
Cosmology – Universe – Cosmic Inflation.webm
Cosmology – Universe – Dark Matter and Dark Energy.mp4
Cosmology – Universe – Death of the Universe.mp4
Cosmology – Universe – Death Stars and their Threat to Earth.mp4
Cosmology – Universe – Do You Know What Time It Is.mp4
Cosmology – Universe – God and the Universe.mp4
Cosmology – Universe – Gravity.mp4
Cosmology – Universe – How Large is the Universe.mp4
Cosmology – Universe – Is There An Edge To the Universe.webm
Cosmology – Universe – Journey Through the Milky Way.mp4
Cosmology – Universe – Journey To The Edge Of The Universe.mp4
Cosmology – Universe – Light Speed.webm
Cosmology – Universe – Mapping the Universe.flv
Cosmology – Universe – Milky Way Galaxy Formation – Simulation.webm
Cosmology – Universe – Most of the Universe is missing.mp4
Cosmology – Universe – Nebulae.webm
Cosmology – Universe – Our Place In The Milky Way.webm
Cosmology – Universe – Parallel Universes.webm
Cosmology – Universe – Pulsars and Quasars.webm
Cosmology – Universe – Seven Ages of Starlight.webm
Cosmology – Universe – Supernovae.webm
Cosmology – Universe – The Energy of Empty Space.mp4
Cosmology – Universe – The Multiverse Theory.webm
Cosmology – Universe – The Platonic Solids.mp4
Cosmology – Universe – The Riddle of Anti Matter.mp4
Cosmology – Universe – Voyager Golden Record.mp4
Cosmology – Universe – What happened before the beginning.webm
Cosmology – Universe – What happened before the Big Bang.mp4
Cosmology – Universe – What is Reality.mp4
Cosmology – Universe – What on Earth is Wrong With Gravity.mp4

View Sample Video – Cosmology – Universe – Mapping the Universe

“The origin of the CIB is a long-standing missing piece in the energy coming from the Universe,” said Seiji Fujimoto, now studying at the Institute of Cosmic Ray Research, the University of Tokyo. “We devoted ourselves to analyzing the gigantic ALMA data in order to find the missing piece.”

Finally, the team discovered 133 faint objects, including an object five times fainter than any other ever detected. The researchers found that the entire CIB can be explained by summing up the emissions from such objects (note).

What is the nature of those sources? By comparing the ALMA data with the data taken by the Hubble Space Telescope and the Subaru Telescope, the team found that 60% of them are galaxies which can also be seen in the optical/infrared images. Dust in galaxies absorbs optical and infrared light and re-emits the energy in longer millimeter waves which can be detected with ALMA.

“However, we have no idea what the rest of them are. I speculate that they are galaxies obscured by dust. Considering their darkness, they would be very low-mass galaxies.” Masami Ouchi explained passionately. “This means that such small galaxies contain great amounts of dust. That conflicts with our current understanding: small galaxies should contain small amounts of dust. Our results might indicate the existence of many unexpected objects in the distant Universe. We are eager to unmask these new enigmatic sources with future ALMA observations.”

Note: ALMA detected a part of the CIB with 1 mm wavelengths. The CIB in millimeter and submillimeter waves does not become weak even if the source is located far away. Therefore this wavelength is suitable for looking through the Universe to the most distant parts.

 

Story Source:

Materials provided by National Institutes of Natural Sciences.

 

Cosmos by John Hussey

 

https://www.sciencedaily.com/releases/2016/03/160310111846.htm

View the Cosmos – Video-eBook or Search for your Cosmos – Answer Here